Source code for mpas_tools.ocean.coastline_alteration

from __future__ import absolute_import, division, print_function, \
    unicode_literals

import numpy
import xarray


[docs]def add_critical_land_blockages(dsMask, dsBlockages): ''' Parameters ---------- dsMask : `xarray.Dataset` The mask to which critical blockages should be added dsBlockage : `xarray.Dataset` The transect masks defining critical land regions that should block ocean flow (e.g. the Antarctic Peninsula) Returns ------- dsMask : `xarray.Dataset` The mask with critical blockages included ''' dsMask = dsMask.copy() nTransects = dsBlockages.sizes['nTransects'] for transectIndex in range(nTransects): dsMask.regionCellMasks[:, 0] = numpy.maximum( dsBlockages.transectCellMasks[:, transectIndex], dsMask.regionCellMasks[:, 0]) return dsMask
[docs]def widen_transect_edge_masks(dsMask, dsMesh, latitude_threshold=43.0): ''' Parameters ---------- dsMask : `xarray.Dataset` The mask to which critical blockages should be added dsMesh : `xarray.Dataset` The transect masks defining critical land regions that should block ocean flow (e.g. the Antarctic Peninsula) latitude_threshold : float Minimum latitude, degrees, for transect widening Returns ------- dsMask : `xarray.Dataset` The mask with critical blockages included ''' latitude_threshold_radians = numpy.deg2rad(latitude_threshold) dsMask = dsMask.copy() maxEdges = dsMesh.sizes['maxEdges'] latMask = numpy.abs(dsMesh.latEdge) > latitude_threshold_radians edgeMask = numpy.logical_and( latMask, dsMask.transectEdgeMasks == 1) for iEdge in range(maxEdges): eoc = dsMesh.edgesOnCell[:, iEdge]-1 mask = numpy.logical_and(eoc >= 0, edgeMask[eoc]) # cells with a neighboring transect edge should be masked to 1 dsMask['transectCellMasks'] = dsMask.transectCellMasks.where( numpy.logical_not(mask), 1.) return dsMask
def add_land_locked_cells_to_mask(dsMask, dsMesh, latitude_threshold=43.0, nSweeps=10): ''' Find ocean cells that are land-locked, and alter the cell mask so that they are counted as land cells. Parameters ---------- dsMask : ``xarray.Dataset`` A land-mask data set dsMesh : ``xarray.Dataset`` MPAS Mesh data set latitude_threshold : float, optional Minimum latitude, in degrees, for transect widening nSweeps : int, optional Maximum number of sweeps to search for land-locked cells Returns ------- dsMask : ``xarray.Dataset`` A copy of the land-mask data set with land-locked cells added to the mask for the first region ''' dsMask = xarray.Dataset(dsMask) dsMesh = dsMesh.copy(deep=True) landMask = dsMask.regionCellMasks.max(dim='nRegions') > 0 dsMask['landMaskDiagnostic'] = xarray.where(landMask, 1, 0) print("Running add_land_locked_cells_to_mask.py. Total number of cells: " "{}".format(dsMesh.sizes['nCells'])) cellsOnCell = dsMesh.cellsOnCell - 1 nEdgesOnCell = dsMesh.nEdgesOnCell nextCellsOnCell = cellsOnCell.copy(deep=True) prevCellsOnCell = cellsOnCell.copy(deep=True) for iEdgeOnCell in range(nextCellsOnCell.shape[1]): iP1 = numpy.mod(iEdgeOnCell + 1, nEdgesOnCell) nextCellsOnCell[:, iEdgeOnCell] = cellsOnCell[:, iP1] iM1 = numpy.mod(iEdgeOnCell - 1, nEdgesOnCell) prevCellsOnCell[:, iEdgeOnCell] = cellsOnCell[:, iM1] dsMesh['cellsOnCell'] = cellsOnCell dsMesh['nextCellsOnCell'] = nextCellsOnCell dsMesh['prevCellsOnCell'] = prevCellsOnCell dsMesh['latCell'] = numpy.rad2deg(dsMesh.latCell) dsMesh['lonCell'] = numpy.rad2deg(dsMesh.lonCell) landMask, removable = _remove_cells_with_isolated_edges1( dsMask, dsMesh, landMask, latitude_threshold) landMask = _remove_cells_with_isolated_edges2( dsMask, dsMesh, landMask, removable, nSweeps) oceanMask = _flood_fill(dsMask, dsMesh, landMask, removable) landMask = _revert_cells_with_connected_edges( dsMask, dsMesh, oceanMask, landMask, removable, nSweeps) return dsMask def _remove_cells_with_isolated_edges1(dsMask, dsMesh, landMask, latitude_threshold): print("Step 1: Searching for land-locked cells. Remove cells that only " "have isolated active edges.") landMaskNew = landMask.copy(deep=True) active = numpy.logical_not(landMask) removable = numpy.logical_and( numpy.abs(dsMesh.latCell) >= latitude_threshold, active) cellsOnCell = dsMesh.cellsOnCell valid = numpy.logical_and(removable, cellsOnCell >= 0) activeEdge = numpy.logical_and(valid, active[cellsOnCell]) nextCellsOnCell = dsMesh.nextCellsOnCell valid = numpy.logical_and(removable, nextCellsOnCell >= 0) activeNextEdge = numpy.logical_and(valid, active[nextCellsOnCell]) # which vertices have adjacent active edges on this cell? activeAdjacentEdges = numpy.logical_and(activeEdge, activeNextEdge) # which removable cells have no pairs of adjacent active cells? noActiveAdjacentEdges = numpy.logical_and( removable, numpy.logical_not(numpy.any(activeAdjacentEdges, axis=1))) landMaskNew[noActiveAdjacentEdges] = 1 landLockedCounter = numpy.count_nonzero(noActiveAdjacentEdges) dsMask.regionCellMasks[:, 0] = numpy.maximum(dsMask.regionCellMasks[:, 0], 1*noActiveAdjacentEdges) dsMask.landMaskDiagnostic[noActiveAdjacentEdges] = 2 print(" Number of landLocked cells: {}".format(landLockedCounter)) return landMaskNew, removable def _remove_cells_with_isolated_edges2(dsMask, dsMesh, landMask, removable, nSweeps): print("Step 2: Searching for land-locked cells. Remove cells that have " "any isolated active edges.") cellsOnCell = dsMesh.cellsOnCell nextCellsOnCell = dsMesh.nextCellsOnCell prevCellsOnCell = dsMesh.prevCellsOnCell for iSweep in range(nSweeps): landLockedCounter = 0 landMaskNew = landMask.copy(deep=True) active = numpy.logical_not(landMask) mask = numpy.logical_and(removable, active) valid = numpy.logical_and(mask, cellsOnCell >= 0) activeEdge = numpy.logical_and(valid, active[cellsOnCell]) valid = numpy.logical_and(mask, nextCellsOnCell >= 0) activeNextEdge = numpy.logical_and(valid, active[nextCellsOnCell]) valid = numpy.logical_and(mask, prevCellsOnCell >= 0) activePrevEdge = numpy.logical_and(valid, active[prevCellsOnCell]) # an edge is land-locked if it is active but neither neighbor is active landLockedEdges = numpy.logical_and( activeEdge, numpy.logical_not( numpy.logical_or(activePrevEdge, activeNextEdge))) landLockedCells = numpy.any(landLockedEdges, axis=1) landLockedCounter = numpy.count_nonzero(landLockedCells) if landLockedCounter > 0: landMaskNew[landLockedCells] = 1 dsMask.regionCellMasks[landLockedCells, 0] = 1 dsMask.landMaskDiagnostic[landLockedCells] = 3 landMask = landMaskNew print(" Sweep: {} Number of landLocked cells removed: {}".format( iSweep + 1, landLockedCounter)) if landLockedCounter == 0: break return landMask def _flood_fill(dsMask, dsMesh, landMask, removable): print("Step 3: Perform flood fill, starting from open ocean.") # init flood fill to 0 for water, -1 for land, 1 for known open ocean floodFill = xarray.where( numpy.logical_and(removable, numpy.logical_not(landMask)), 0, -1) latCell = dsMesh.latCell lonCell = dsMesh.lonCell cellsOnCell = dsMesh.cellsOnCell # North Pole mask = latCell > 84.0 openOceanMask = mask # Arctic mask = numpy.logical_and( numpy.logical_and(lonCell > 160.0, lonCell < 230.0), latCell > 73.0) openOceanMask = numpy.logical_or(openOceanMask, mask) # North Atlantic mask = numpy.logical_and( numpy.logical_and(lonCell > 315.0, lonCell < 340.0), numpy.logical_and(latCell > 15.0, latCell < 45.0)) openOceanMask = numpy.logical_or(openOceanMask, mask) mask = numpy.logical_and( numpy.logical_and(lonCell > 290.0, lonCell < 300.0), numpy.logical_and(latCell > 72.0, latCell < 75.0)) openOceanMask = numpy.logical_or(openOceanMask, mask) mask = numpy.logical_and( numpy.logical_and(lonCell > 0.0, lonCell < 10.0), numpy.logical_and(latCell > 70.0, latCell < 75.0)) openOceanMask = numpy.logical_or(openOceanMask, mask) # North Pacific mask = numpy.logical_and( numpy.logical_and(lonCell > 150.0, lonCell < 225.0), numpy.logical_and(latCell > 0.0, latCell < 45.0)) openOceanMask = numpy.logical_or(openOceanMask, mask) # South Atlantic mask = numpy.logical_and( numpy.logical_and(lonCell > 0.0, lonCell < 5.0), numpy.logical_and(latCell > -60.0, latCell < 0.0)) openOceanMask = numpy.logical_or(openOceanMask, mask) # South Pacific mask = numpy.logical_and( numpy.logical_and(lonCell > 180.0, lonCell < 280.0), numpy.logical_and(latCell > -60.0, latCell < -10.0)) openOceanMask = numpy.logical_or(openOceanMask, mask) # Southern Ocean mask = numpy.logical_and( numpy.logical_and(lonCell > 0.0, lonCell < 165.0), numpy.logical_and(latCell > -60.0, latCell < -45.0)) openOceanMask = numpy.logical_or(openOceanMask, mask) mask = numpy.logical_and(floodFill == 0, openOceanMask) floodFill[mask] = 1 nFloodableCells = numpy.count_nonzero(floodFill == 0) print(" Initial number of flood cells: {}".format(nFloodableCells)) dsMask.landMaskDiagnostic[floodFill == 1] = 5 # sweep over neighbors of known open ocean points for iSweep in range(dsMesh.sizes['nCells']): newFloodCellsThisSweep = 0 mask = floodFill == 0 cellIndices = numpy.nonzero(mask.values)[0] for iCellOnCell in range(cellsOnCell.shape[1]): neighbors = cellsOnCell[cellIndices, iCellOnCell] filledNeighbors = numpy.logical_and(neighbors >= 0, floodFill[neighbors] == 1) fillIndices = cellIndices[filledNeighbors.values] if(len(fillIndices) > 0): floodFill[fillIndices] = 1 newFloodCellsThisSweep += len(fillIndices) print(" Sweep {} new flood cells this sweep: {}".format( iSweep, newFloodCellsThisSweep)) if (newFloodCellsThisSweep == 0): break oceanMask = (floodFill == 1) print('oceanMask:', numpy.count_nonzero(oceanMask)) return oceanMask def _revert_cells_with_connected_edges(dsMask, dsMesh, oceanMask, landMask, removable, nSweeps): print("Step 4: Searching for land-locked cells, step 3: revert cells with " "connected active edges") cellsOnCell = dsMesh.cellsOnCell nextCellsOnCell = dsMesh.nextCellsOnCell prevCellsOnCell = dsMesh.prevCellsOnCell for iSweep in range(nSweeps): landMaskNew = numpy.array(landMask) # only remove a cell that was added in Step 2, # _remove_cells_with_isolated_edges2 mask = numpy.logical_and(removable, dsMask.landMaskDiagnostic == 3) notLand = numpy.logical_not(landMask) valid = numpy.logical_and(mask, cellsOnCell >= 0) oceanEdge = numpy.logical_and(valid, oceanMask[cellsOnCell]) valid = numpy.logical_and(mask, nextCellsOnCell >= 0) activeNextEdge = numpy.logical_and(valid, notLand[nextCellsOnCell]) valid = numpy.logical_and(mask, prevCellsOnCell >= 0) activePrevEdge = numpy.logical_and(valid, notLand[prevCellsOnCell]) reactivate = numpy.any( numpy.logical_and( oceanEdge, numpy.logical_or(activePrevEdge, activeNextEdge)), axis=1) landLockedCounter = numpy.count_nonzero(reactivate) if landLockedCounter > 0: landMaskNew[reactivate] = 0 dsMask.regionCellMasks[reactivate, 0] = 0 oceanMask[reactivate] = 1 dsMask.landMaskDiagnostic[reactivate] = 4 landMask = landMaskNew print(" Sweep: {} Number of land-locked cells returned: {}".format( iSweep + 1, landLockedCounter)) if landLockedCounter == 0: break return landMask