from __future__ import absolute_import, division, print_function, \
unicode_literals
import xarray
import numpy
import logging
import sys
import copy
import shapely.ops
import shapely.geometry
from geometric_features import GeometricFeatures, FeatureCollection
import mpas_tools.mesh.conversion
from mpas_tools.io import write_netcdf
[docs]def make_moc_basins_and_transects(gf, mesh_filename,
mask_and_transect_filename,
geojson_filename=None,
mask_filename=None,
logger=None,
dir=None):
"""
Builds features defining the ocean basins and southern transects used in
computing the meridional overturning circulation (MOC)
Parameters
----------
gf : ``GeometricFeatures``
An object that knows how to download and read geometric featuers
mesh_filename : str
A file with MPAS mesh information
mask_and_transect_filename : str
A file to write the MOC region masks and southern-boundary transects to
geojson_filename : str, optional
A file to write MOC regions to
mask_filename : str, optional
A file to write MOC region masks to
logger : ``logging.Logger``, optional
A logger for the output if not stdout
dir : str, optional
A directory in which a temporary directory will be added with files
produced during conversion and then deleted upon completion.
Returns
-------
fc : ``FeatureCollection``
The new feature collection
"""
# Authors
# -------
# Xylar Asay-Davis
fcMOC = build_moc_basins(gf, logger)
if geojson_filename is not None:
fcMOC.to_geojson(geojson_filename)
dsMesh = xarray.open_dataset(mesh_filename)
dsMasks = mpas_tools.mesh.conversion.mask(dsMesh=dsMesh, fcMask=fcMOC,
logger=logger, dir=dir)
if mask_filename is not None:
write_netcdf(dsMasks, mask_filename, char_dim_name='StrLen')
dsMasksAndTransects = add_moc_southern_boundary_transects(dsMasks, dsMesh,
logger=logger)
write_netcdf(dsMasksAndTransects, mask_and_transect_filename,
char_dim_name='StrLen')
[docs]def build_moc_basins(gf, logger=None):
"""
Builds features defining the ocean basins used in computing the meridional
overturning circulation (MOC)
Parameters
----------
gf : ``GeometricFeatures``
An object that knows how to download and read geometric featuers
logger : ``logging.Logger``, optional
A logger for the output if not stdout
Returns
-------
fc : ``FeatureCollection``
The new feature collection
"""
# Authors
# -------
# Xylar Asay-Davis
useStdout = logger is None
if useStdout:
logger = logging.getLogger()
logger.addHandler(logging.StreamHandler(sys.stdout))
logger.setLevel(logging.INFO)
MOCSubBasins = {'Atlantic': ['Atlantic', 'Mediterranean'],
'IndoPacific': ['Pacific', 'Indian'],
'Pacific': ['Pacific'],
'Indian': ['Indian']}
MOCSouthernBoundary = {'Atlantic': '34S',
'IndoPacific': '34S',
'Pacific': '6S',
'Indian': '6S'}
fc = FeatureCollection()
fc.set_group_name(groupName='MOCBasinRegionsGroup')
# build MOC basins from regions with the appropriate tags
for basinName in MOCSubBasins:
logger.info('{} MOC'.format(basinName))
logger.info(' * merging features')
tags = ['{}_Basin'.format(basin) for basin in
MOCSubBasins[basinName]]
fcBasin = gf.read(componentName='ocean', objectType='region',
tags=tags, allTags=False)
logger.info(' * combining features')
fcBasin = fcBasin.combine(featureName='{}_MOC'.format(basinName))
logger.info(' * masking out features south of MOC region')
maskName = 'MOC mask {}'.format(MOCSouthernBoundary[basinName])
fcMask = gf.read(componentName='ocean', objectType='region',
featureNames=[maskName])
# mask out the region covered by the mask
fcBasin = fcBasin.difference(fcMask)
# remove various small polygons that are not part of the main MOC
# basin shapes. Most are tiny but one below Australia is about 20
# deg^2, so make the threshold 100 deg^2 to be on the safe side.
fcBasin = _remove_small_polygons(fcBasin, minArea=100., logger=logger)
# add this basin to the full feature collection
fc.merge(fcBasin)
if useStdout:
logger.handlers = []
return fc
[docs]def add_moc_southern_boundary_transects(dsMask, dsMesh, logger=None):
"""
Parameters
----------
dsMask : ``xarray.Dataset``
Region masks defining MOC basins
dsMesh : ``xarray.Dataset``, optional
An MPAS mesh on which the masks should be created
logger : ``logging.Logger``, optional
A logger for the output if not stdout
Returns
-------
dsMask : ``xarray.Dataset``
Region masks defining MOC basins and the corresponding southern-boundary
transects
"""
useStdout = logger is None
if useStdout:
logger = logging.getLogger()
logger.addHandler(logging.StreamHandler(sys.stdout))
logger.setLevel(logging.INFO)
southernBoundaryEdges, southernBoiundaryEdgeSigns, \
southernBoundaryVertices = \
_extract_southern_boundary(dsMesh, dsMask, latBuffer=3.*numpy.pi/180.,
logger=logger)
_add_transects_to_moc(dsMesh, dsMask, southernBoundaryEdges,
southernBoiundaryEdgeSigns,
southernBoundaryVertices)
if useStdout:
logger.handlers = []
return dsMask
def _extract_southern_boundary(mesh, mocMask, latBuffer, logger):
# Extrcts the southern boundary of each region mask in mocMask. Mesh info
# is taken from mesh. latBuffer is a number of radians above the southern-
# most point that should be considered to definitely be in the southern
# boundary.
nCells = mesh.dims['nCells']
nEdges = mesh.dims['nEdges']
nRegions = mocMask.dims['nRegions']
assert(mocMask.dims['nCells'] == nCells)
# convert to python zero-based indices
cellsOnEdge = mesh.variables['cellsOnEdge'].values-1
verticesOnEdge = mesh.variables['verticesOnEdge'].values-1
edgesOnVertex = mesh.variables['edgesOnVertex'].values-1
latEdge = mesh.variables['latEdge'].values
cellsOnEdgeInRange = numpy.logical_and(cellsOnEdge >= 0,
cellsOnEdge < nCells)
southernBoundaryEdges = []
southernBoiundaryEdgeSigns = []
southernBoundaryVertices = []
for iRegion in range(nRegions):
name = mocMask.regionNames[iRegion].values.astype('U')
logger.info(name)
cellMask = mocMask.variables['regionCellMasks'][:, iRegion].values
# land cells are outside not in the MOC region
cellsOnEdgeMask = numpy.zeros(cellsOnEdge.shape, bool)
# set mask values for cells that are in range (not land)
cellsOnEdgeMask[cellsOnEdgeInRange] = \
cellMask[cellsOnEdge[cellsOnEdgeInRange]] == 1
logger.info(' computing edge sign...')
edgeSign = numpy.zeros(nEdges)
# positive sign if the first cell on edge is in the region
mask = numpy.logical_and(cellsOnEdgeMask[:, 0],
numpy.logical_not(cellsOnEdgeMask[:, 1]))
edgeSign[mask] = -1.
# negative sign if the second cell on edge is in the region
mask = numpy.logical_and(cellsOnEdgeMask[:, 1],
numpy.logical_not(cellsOnEdgeMask[:, 0]))
edgeSign[mask] = 1.
isMOCBoundaryEdge = edgeSign != 0.
edgesMOCBoundary = numpy.arange(nEdges)[isMOCBoundaryEdge]
logger.info(' done.')
startEdge = numpy.argmin(latEdge[isMOCBoundaryEdge])
startEdge = edgesMOCBoundary[startEdge]
minLat = latEdge[startEdge]
logger.info(' getting edge sequence...')
# follow the boundary from this point to get a loop of edges
# Note: it is possible but unlikely that the southern-most point is
# not within bulk region of the MOC mask if the region is not a single
# shape
edgeSequence, edgeSequenceSigns, vertexSequence = \
_get_edge_sequence_on_boundary(startEdge, edgeSign, edgesOnVertex,
verticesOnEdge)
logger.info(' done: {} edges in transect.'.format(len(edgeSequence)))
aboveSouthernBoundary = latEdge[edgeSequence] > minLat + latBuffer
# find and eliminate the longest contiguous sequence (if any) from the
# edge sequence that is above the possible region of the soutehrn
# boundary
belowToAbove = \
numpy.logical_and(numpy.logical_not(aboveSouthernBoundary[0:-1]),
aboveSouthernBoundary[1:])
aboveToBelow = \
numpy.logical_and(aboveSouthernBoundary[0:-1],
numpy.logical_not(aboveSouthernBoundary[1:]))
startIndices = numpy.arange(1, len(edgeSequence))[belowToAbove]
endIndices = numpy.arange(1, len(edgeSequence))[aboveToBelow]
assert(len(startIndices) == len(endIndices))
if len(startIndices) == 0:
# the whole sequence is the southern boundary
southernBoundaryEdges.append(edgeSequence)
southernBoiundaryEdgeSigns.append(edgeSequenceSigns)
southernBoundaryVertices.append(vertexSequence)
continue
# there are some parts of the sequence above the boundary. Let's
# eliminate the longest one.
aboveLength = endIndices - startIndices
longest = numpy.argmax(aboveLength)
# we want all the indices in the sequence *not* part of the longest
indices = numpy.arange(endIndices[longest],
startIndices[longest] + len(edgeSequence))
indices = numpy.mod(indices, len(edgeSequence))
southernBoundaryEdges.append(edgeSequence[indices])
southernBoiundaryEdgeSigns.append(edgeSequenceSigns[indices])
# we want one extra vertex in the vertex sequence
indices = numpy.arange(endIndices[longest],
startIndices[longest] + len(edgeSequence) + 1)
indices = numpy.mod(indices, len(edgeSequence))
southernBoundaryVertices.append(vertexSequence[indices])
return (southernBoundaryEdges, southernBoiundaryEdgeSigns,
southernBoundaryVertices)
def _add_transects_to_moc(mesh, mocMask, southernBoundaryEdges,
southernBoiundaryEdgeSigns, southernBoundaryVertices):
# Creates transect fields in mocMask from the edges, edge signs and
# vertices defining the southern boundaries. Mesh info (nEdges and
# nVertices) is taken from the mesh file.
nTransects = len(southernBoundaryEdges)
nEdges = mesh.dims['nEdges']
nVertices = mesh.dims['nVertices']
maxEdgesInTransect = numpy.amax([len(southernBoundaryEdges[iTransect])
for iTransect in range(nTransects)])
maxVerticesInTransect = \
numpy.amax([len(southernBoundaryVertices[iTransect])
for iTransect in range(nTransects)])
transectEdgeMasks = numpy.zeros((nEdges, nTransects),
numpy.int32)
transectEdgeMaskSigns = numpy.zeros((nEdges, nTransects),
numpy.int32)
transectEdgeGlobalIDs = numpy.zeros((nTransects, maxEdgesInTransect),
numpy.int32)
transectVertexMasks = numpy.zeros((nVertices, nTransects),
numpy.int32)
transectVertexGlobalIDs = numpy.zeros((nTransects, maxVerticesInTransect),
numpy.int32)
for iTransect in range(nTransects):
transectEdgeMasks[southernBoundaryEdges[iTransect], iTransect] = 1
transectEdgeMaskSigns[southernBoundaryEdges[iTransect], iTransect] \
= southernBoiundaryEdgeSigns[iTransect]
transectCount = len(southernBoundaryEdges[iTransect])
transectEdgeGlobalIDs[iTransect, 0:transectCount] \
= southernBoundaryEdges[iTransect] + 1
transectVertexMasks[southernBoundaryVertices[iTransect], iTransect] = 1
transectCount = len(southernBoundaryVertices[iTransect])
transectVertexGlobalIDs[iTransect, 0:transectCount] \
= southernBoundaryVertices[iTransect] + 1
mocMask['transectEdgeMasks'] = \
(('nEdges', 'nTransects'), transectEdgeMasks)
mocMask['transectEdgeMaskSigns'] = (('nEdges', 'nTransects'),
transectEdgeMaskSigns)
mocMask['transectEdgeGlobalIDs'] = (('nTransects', 'maxEdgesInTransect'),
transectEdgeGlobalIDs)
mocMask['transectVertexMasks'] = (('nVertices', 'nTransects'),
transectVertexMasks)
mocMask['transectVertexGlobalIDs'] = \
(('nTransects', 'maxVerticesInTransect'), transectVertexGlobalIDs)
mocMask['transectNames'] = mocMask.regionNames.rename(
{'nRegions': 'nTransects'})
mocMask['nTransectsInGroup'] = mocMask.nRegionsInGroup.rename(
{'nRegionGroups': 'nTransectGroups'})
mocMask['transectsInGroup'] = mocMask.regionsInGroup.rename(
{'nRegionGroups': 'nTransectGroups',
'maxRegionsInGroup': 'maxTransectsInGroup'})
mocMask['transectGroupNames'] = mocMask.regionGroupNames.rename(
{'nRegionGroups': 'nTransectGroups'})
def _get_edge_sequence_on_boundary(startEdge, edgeSign, edgesOnVertex,
verticesOnEdge):
# Follows the boundary from a starting edge to produce a sequence of
# edges that form a closed loop.
#
# startEdge is an edge on the boundary that will be both the start and
# end of the loop.
#
# isBoundaryEdge is a mask that indicates which edges are on the
# boundary
#
# returns lists of edges, edge signs and vertices
iEdge = startEdge
edgeSequence = []
vertexSequence = []
while True:
assert(edgeSign[iEdge] == 1. or edgeSign[iEdge] == -1.)
if edgeSign[iEdge] == 1.:
v = 0
else:
v = 1
iVertex = verticesOnEdge[iEdge, v]
eov = edgesOnVertex[iVertex, :]
# find the edge that is not iEdge but is on the boundary
nextEdge = -1
for edge in eov:
if edge != iEdge and edgeSign[edge] != 0:
nextEdge = edge
break
assert(nextEdge != -1)
edgeSequence.append(iEdge)
vertexSequence.append(iVertex)
iEdge = nextEdge
if iEdge == startEdge:
break
edgeSequence = numpy.array(edgeSequence)
edgeSequenceSigns = edgeSign[edgeSequence]
vertexSequence = numpy.array(vertexSequence)
return edgeSequence, edgeSequenceSigns, vertexSequence
def _remove_small_polygons(fc, minArea, logger):
"""
A helper function to remove small polygons from a feature collection
Parameters
----------
fc : ``FeatureCollection``
The feature collection to remove polygons from
minArea : float
The minimum area (in square degrees) below which polygons should be
removed
Returns
-------
fcOut : ``FeatureCollection``
The new feature collection with small polygons removed
"""
# Authors
# -------
# Xylar Asay-Davis
fcOut = FeatureCollection()
removedCount = 0
for feature in fc.features:
geom = feature['geometry']
add = False
if geom['type'] not in ['Polygon', 'MultiPolygon']:
# no area to check, so just add it
fcOut.add_feature(copy.deepcopy(feature))
else:
featureShape = shapely.geometry.shape(geom)
if featureShape.type == 'Polygon':
if featureShape.area > minArea:
add = True
else:
removedCount += 1
else:
# a MultiPolygon
outPolygons = []
for polygon in featureShape:
if polygon.area > minArea:
outPolygons.append(polygon)
else:
removedCount += 1
if len(outPolygons) > 0:
outShape = shapely.ops.cascaded_union(outPolygons)
feature['geometry'] = shapely.geometry.mapping(outShape)
add = True
if add:
fcOut.add_feature(copy.deepcopy(feature))
else:
logger.info("{} has been removed.".format(
feature['properties']['name']))
logger.info(' * Removed {} small polygons'.format(removedCount))
return fcOut