Source code for mpas_tools.viz.transects

import numpy
import xarray

from scipy.spatial import cKDTree
from shapely.geometry import LineString, Point


[docs]def make_triangle_tree(dsTris): """ Make a KD-Tree for finding triangle edges that are near enough to transect segments that they might intersect Parameters ---------- dsTris : xarray.Dataset A dataset that defines triangles, the results of calling ``mesh_to_triangles()`` Returns ------- tree : scipy.spatial.cKDTree A tree of edge centers from triangles making up an MPAS mesh """ nTriangles = dsTris.sizes['nTriangles'] nNodes = dsTris.sizes['nNodes'] nodeCoords = numpy.zeros((nTriangles*nNodes, 3)) nodeCoords[:, 0] = dsTris.xNode.values.ravel() nodeCoords[:, 1] = dsTris.yNode.values.ravel() nodeCoords[:, 2] = dsTris.zNode.values.ravel() nextTri, nextNode = numpy.meshgrid( numpy.arange(nTriangles), numpy.mod(numpy.arange(nNodes) + 1, 3), indexing='ij') nextIndices = nNodes*nextTri.ravel() + nextNode.ravel() # edge centers are half way between adjacent nodes (ignoring great-circle # distance) edgeCoords = 0.5*(nodeCoords + nodeCoords[nextIndices, :]) tree = cKDTree(data=edgeCoords, copy_data=True) return tree
[docs]def find_transect_cells_and_weights(lonTransect, latTransect, dsTris, dsMesh, tree, degrees=True, subdivisionRes=10e3): """ Find "nodes" where the transect intersects the edges of the triangles that make up MPAS cells. Parameters ---------- lonTransect, latTransect : xarray.DataArray The latitude and longitude of segments making up the transect dsTris : xarray.Dataset A dataset that defines triangles, the results of calling ``mesh_to_triangles()`` dsMesh : xarray.Dataset A data set with the full MPAS mesh. tree : scipy.spatial.cKDTree A tree of edge centers from triangles making up an MPAS mesh, the return value from ``make_triangle_tree()`` degrees : bool, optional Whether ``lonTransect`` and ``latTransect`` are in degrees (as opposed to radians). subdivisionRes : float, optional Resolution in m to use to subdivide the transect when looking for intersection candidates. Should be small enough that curvature is small. Returns ------- dsOut : xarray.Dataset A dataset that contains "nodes" where the transect intersects the edges of the triangles in ``dsTris``. The nodes also includes the two end points of the transect, which typically lie within triangles. Each internal node (that is, not including the end points) is purposefully repeated twice, once for each triangle that node touches. This allows for discontinuous fields between triangles (e.g. if one wishes to plot constant values on each MPAS cell). The Cartesian and lon/lat coordinates of these nodes are ``xCartNode``, ``yCartNode``, ``zCartNode``, ``lonNode`` and ``latNode``. The distance along the transect of each intersection is ``dNode``. The index of the triangle and the first triangle node in ``dsTris`` associated with each intersection node are given by ``horizTriangleIndices`` and ``horizTriangleNodeIndices``, respectively. The second node on the triangle for the edge associated with the intersection is given by ``numpy.mod(horizTriangleNodeIndices + 1, 3)``. The MPAS cell that a given node belongs to is given by ``horizCellIndices``. Each node also has an associated set of 6 ``interpHorizCellIndices`` and ``interpHorizCellWeights`` that can be used to interpolate from MPAS cell centers to nodes first with area-weighted averaging to MPAS vertices and then linear interpolation along triangle edges. Some of the weights may be zero, in which case the associated ``interpHorizCellIndices`` will be -1. Finally, ``lonTransect`` and ``latTransect`` are included in the dataset, along with Cartesian coordinates ``xCartTransect``, ``yCartTransect``, `zCartTransect``, and ``dTransect``, the great-circle distance along the transect of each original transect point. In order to interpolate values (e.g. observations) from the original transect points to the intersection nodes, linear interpolation indices ``transectIndicesOnHorizNode`` and weights ``transectWeightsOnHorizNode`` are provided. The values at nodes are found by:: nodeValues = ((transectValues[transectIndicesOnHorizNode] * transectWeightsOnHorizNode) + (transectValues[transectIndicesOnHorizNode+1] * (1.0 - transectWeightsOnHorizNode)) """ earth_radius = dsMesh.attrs['sphere_radius'] buffer = numpy.maximum(numpy.amax(dsMesh.dvEdge.values), numpy.amax(dsMesh.dcEdge.values)) x, y, z = _lon_lat_to_cartesian(lonTransect, latTransect, earth_radius, degrees) nNodes = dsTris.sizes['nNodes'] nodeCellWeights = dsTris.nodeCellWeights.values nodeCellIndices = dsTris.nodeCellIndices.values xNode = dsTris.xNode.values.ravel() yNode = dsTris.yNode.values.ravel() zNode = dsTris.zNode.values.ravel() dTransect = numpy.zeros(lonTransect.shape) dNode = None xOut = None yOut = None zOut = None tris = None nodes = None interpCells = None cellWeights = None nHorizWeights = 6 first = True dStart = 0. for segIndex in range(len(x)-1): transectv0 = Vector(x[segIndex].values, y[segIndex].values, z[segIndex].values) transectv1 = Vector(x[segIndex+1].values, y[segIndex+1].values, z[segIndex+1].values) subSlice = slice(segIndex, segIndex+2) xSub, ySub, zSub, _, _ = subdivide_great_circle( x[subSlice].values, y[subSlice].values, z[subSlice].values, subdivisionRes, earth_radius) coords = numpy.zeros((len(xSub), 3)) coords[:, 0] = xSub coords[:, 1] = ySub coords[:, 2] = zSub radius = buffer + subdivisionRes indexList = tree.query_ball_point(x=coords, r=radius) uniqueIndices = set() for indices in indexList: uniqueIndices.update(indices) n0IndicesCand = numpy.array(list(uniqueIndices)) if len(n0IndicesCand) == 0: continue trisCand = n0IndicesCand//nNodes nextNodeIndex = numpy.mod(n0IndicesCand + 1, nNodes) n1IndicesCand = nNodes * trisCand + nextNodeIndex n0Cand = Vector(xNode[n0IndicesCand], yNode[n0IndicesCand], zNode[n0IndicesCand]) n1Cand = Vector(xNode[n1IndicesCand], yNode[n1IndicesCand], zNode[n1IndicesCand]) intersect = _intersects(n0Cand, n1Cand, transectv0, transectv1) n0Inter = Vector(n0Cand.x[intersect], n0Cand.y[intersect], n0Cand.z[intersect]) n1Inter = Vector(n1Cand.x[intersect], n1Cand.y[intersect], n1Cand.z[intersect]) trisInter = trisCand[intersect] n0IndicesInter = n0IndicesCand[intersect] n1IndicesInter = n1IndicesCand[intersect] intersections = _intersection(n0Inter, n1Inter, transectv0, transectv1) intersections = Vector(earth_radius*intersections.x, earth_radius*intersections.y, earth_radius*intersections.z) angularDistance = _angular_distance(first=transectv0, second=intersections) dNodeLocal = dStart + earth_radius * angularDistance dStart += earth_radius*_angular_distance(first=transectv0, second=transectv1) node0Inter = numpy.mod(n0IndicesInter, nNodes) node1Inter = numpy.mod(n1IndicesInter, nNodes) nodeWeights = (_angular_distance(first=intersections, second=n1Inter) / _angular_distance(first=n0Inter, second=n1Inter)) weights = numpy.zeros((len(trisInter), nHorizWeights)) cellIndices = numpy.zeros((len(trisInter), nHorizWeights), int) for index in range(3): weights[:, index] = (nodeWeights * nodeCellWeights[trisInter, node0Inter, index]) cellIndices[:, index] = \ nodeCellIndices[trisInter, node0Inter, index] weights[:, index+3] = ((1.0 - nodeWeights) * nodeCellWeights[trisInter, node1Inter, index]) cellIndices[:, index+3] = \ nodeCellIndices[trisInter, node1Inter, index] if first: xOut = intersections.x yOut = intersections.y zOut = intersections.z dNode = dNodeLocal tris = trisInter nodes = node0Inter interpCells = cellIndices cellWeights = weights first = False else: xOut = numpy.append(xOut, intersections.x) yOut = numpy.append(yOut, intersections.y) zOut = numpy.append(zOut, intersections.z) dNode = numpy.append(dNode, dNodeLocal) tris = numpy.concatenate((tris, trisInter)) nodes = numpy.concatenate((nodes, node0Inter)) interpCells = numpy.concatenate((interpCells, cellIndices), axis=0) cellWeights = numpy.concatenate((cellWeights, weights), axis=0) dTransect[segIndex + 1] = dStart epsilon = 1e-6*subdivisionRes dNode, xOut, yOut, zOut, tris, nodes, interpCells, cellWeights = \ _sort_intersections(dNode, tris, nodes, xOut, yOut, zOut, interpCells, cellWeights, epsilon) dNode, xOut, yOut, zOut, tris, nodes, interpCells, cellWeights = \ _update_start_end_triangles(tris, nodes, interpCells, cellWeights, dNode, xOut, yOut, zOut, dStart, x, y, z) lonOut, latOut = _cartesian_to_lon_lat(xOut, yOut, zOut, earth_radius, degrees) nSegments = len(xOut)//2 nBounds = 2 cellIndices = dsTris.triCellIndices.values[tris] nodes = nodes.reshape((nSegments, nBounds)) dNode = dNode.reshape((nSegments, nBounds)) dsOut = xarray.Dataset() dsOut['xCartNode'] = (('nSegments', 'nBounds'), xOut.reshape((nSegments, nBounds))) dsOut['yCartNode'] = (('nSegments', 'nBounds'), yOut.reshape((nSegments, nBounds))) dsOut['zCartNode'] = (('nSegments', 'nBounds'), zOut.reshape((nSegments, nBounds))) dsOut['dNode'] = (('nSegments', 'nBounds'), dNode) dsOut['lonNode'] = (('nSegments', 'nBounds'), lonOut.reshape((nSegments, nBounds))) dsOut['latNode'] = (('nSegments', 'nBounds'), latOut.reshape((nSegments, nBounds))) dsOut['horizTriangleIndices'] = ('nSegments', tris) dsOut['horizCellIndices'] = ('nSegments', cellIndices) dsOut['horizTriangleNodeIndices'] = (('nSegments', 'nBounds'), nodes) dsOut['interpHorizCellIndices'] = \ (('nSegments', 'nBounds', 'nHorizWeights'), interpCells.reshape((nSegments, nBounds, nHorizWeights))) dsOut['interpHorizCellWeights'] = \ (('nSegments', 'nBounds', 'nHorizWeights'), cellWeights.reshape((nSegments, nBounds, nHorizWeights))) transectIndicesOnHorizNode = numpy.zeros(dNode.shape, int) transectWeightsOnHorizNode = numpy.zeros(dNode.shape) for segIndex in range(len(dTransect)-1): d0 = dTransect[segIndex] d1 = dTransect[segIndex+1] mask = numpy.logical_and(dNode >= d0, dNode < d1) transectIndicesOnHorizNode[mask] = segIndex transectWeightsOnHorizNode[mask] = (d1 - dNode[mask])/(d1 - d0) # last index will get missed by the mask and needs to be handled as a # special case transectIndicesOnHorizNode[-1, 1] = len(dTransect)-2 transectWeightsOnHorizNode[-1, 1] = 0.0 dsOut['lonTransect'] = lonTransect dsOut['latTransect'] = latTransect dsOut['xCartTransect'] = x dsOut['yCartTransect'] = y dsOut['zCartTransect'] = z dsOut['dTransect'] = (lonTransect.dims, dTransect) dsOut['transectIndicesOnHorizNode'] = (('nSegments', 'nBounds'), transectIndicesOnHorizNode) dsOut['transectWeightsOnHorizNode'] = (('nSegments', 'nBounds'), transectWeightsOnHorizNode) return dsOut
def find_planar_transect_cells_and_weights(xTransect, yTransect, dsTris, dsMesh, tree, subdivisionRes=10e3): """ Find "nodes" where the transect intersects the edges of the triangles that make up MPAS cells. Parameters ---------- xTransect, yTransect : xarray.DataArray The x and y points defining segments making up the transect dsTris : xarray.Dataset A dataset that defines triangles, the results of calling ``mesh_to_triangles()`` dsMesh : xarray.Dataset A data set with the full MPAS mesh. tree : scipy.spatial.cKDTree A tree of edge centers from triangles making up an MPAS mesh, the return value from ``make_triangle_tree()`` subdivisionRes : float, optional Resolution in m to use to subdivide the transect when looking for intersection candidates. Should be small enough that curvature is small. Returns ------- dsOut : xarray.Dataset A dataset that contains "nodes" where the transect intersects the edges of the triangles in ``dsTris``. The nodes also include the two end points of the transect, which typically lie within triangles. Each internal node (that is, not including the end points) is purposefully repeated twice, once for each triangle that node touches. This allows for discontinuous fields between triangles (e.g. if one wishes to plot constant values on each MPAS cell). The planar coordinates of these nodes are ``xNode`` and ``yNode``. The distance along the transect of each intersection is ``dNode``. The index of the triangle and the first triangle node in ``dsTris`` associated with each intersection node are given by ``horizTriangleIndices`` and ``horizTriangleNodeIndices``, respectively. The second node on the triangle for the edge associated with the intersection is given by ``numpy.mod(horizTriangleNodeIndices + 1, 3)``. The MPAS cell that a given node belongs to is given by ``horizCellIndices``. Each node also has an associated set of 6 ``interpHorizCellIndices`` and ``interpHorizCellWeights`` that can be used to interpolate from MPAS cell centers to nodes first with area-weighted averaging to MPAS vertices and then linear interpolation along triangle edges. Some of the weights may be zero, in which case the associated ``interpHorizCellIndices`` will be -1. Finally, ``xTransect`` and ``yTransect`` are included in the dataset, along with ``dTransect``, the distance along the transect of each original transect point. In order to interpolate values (e.g. observations) from the original transect points to the intersection nodes, linear interpolation indices ``transectIndicesOnHorizNode`` and weights ``transectWeightsOnHorizNode`` are provided. The values at nodes are found by:: nodeValues = ((transectValues[transectIndicesOnHorizNode] * transectWeightsOnHorizNode) + (transectValues[transectIndicesOnHorizNode+1] * (1.0 - transectWeightsOnHorizNode)) """ buffer = numpy.maximum(numpy.amax(dsMesh.dvEdge.values), numpy.amax(dsMesh.dcEdge.values)) nNodes = dsTris.sizes['nNodes'] nodeCellWeights = dsTris.nodeCellWeights.values nodeCellIndices = dsTris.nodeCellIndices.values x = xTransect y = yTransect xNode = dsTris.xNode.values.ravel() yNode = dsTris.yNode.values.ravel() coordNode = numpy.zeros((len(xNode), 2)) coordNode[:, 0] = xNode coordNode[:, 1] = yNode dTransect = numpy.zeros(xTransect.shape) dNode = None xOut = None yOut = None tris = None nodes = None interpCells = None cellWeights = None nHorizWeights = 6 first = True dStart = 0. for segIndex in range(len(x)-1): subSlice = slice(segIndex, segIndex+2) xSub, ySub, _, _ = subdivide_planar( x[subSlice].values, y[subSlice].values, subdivisionRes) startPoint = Point(xTransect[segIndex].values, yTransect[segIndex].values) endPoint = Point(xTransect[segIndex+1].values, yTransect[segIndex+1].values) segment = LineString([startPoint, endPoint]) coords = numpy.zeros((len(xSub), 3)) coords[:, 0] = xSub coords[:, 1] = ySub radius = buffer + subdivisionRes indexList = tree.query_ball_point(x=coords, r=radius) uniqueIndices = set() for indices in indexList: uniqueIndices.update(indices) startIndices = numpy.array(list(uniqueIndices)) if len(startIndices) == 0: continue trisCand = startIndices//nNodes nextNodeIndex = numpy.mod(startIndices + 1, nNodes) endIndices = nNodes * trisCand + nextNodeIndex intersectingNodes = list() trisInter = list() xIntersection = list() yIntersection = list() nodeWeights = list() node0Inter = list() node1Inter = list() distances = list() for index in range(len(startIndices)): start = startIndices[index] end = endIndices[index] node0 = Point(coordNode[start, 0], coordNode[start, 1]) node1 = Point(coordNode[end, 0], coordNode[end, 1]) edge = LineString([node0, node1]) if segment.intersects(edge): intersection = segment.intersection(edge) intersectingNodes.append((node0, node1, start, end, edge)) if isinstance(intersection, LineString): raise ValueError('A triangle edge exactly coincides with a ' 'transect segment and I can\'t handle ' 'that case. Try moving the transect a ' 'tiny bit.') elif not isinstance(intersection, Point): raise ValueError('Unexpected intersection type {}'.format( intersection)) xIntersection.append(intersection.x) yIntersection.append(intersection.y) startToIntersection = LineString([startPoint, intersection]) weight = (LineString([intersection, node1]).length / LineString([node0, node1]).length) nodeWeights.append(weight) node0Inter.append(numpy.mod(start, nNodes)) node1Inter.append(numpy.mod(end, nNodes)) distances.append(startToIntersection.length) trisInter.append(trisCand[index]) distances = numpy.array(distances) xIntersection = numpy.array(xIntersection) yIntersection = numpy.array(yIntersection) nodeWeights = numpy.array(nodeWeights) node0Inter = numpy.array(node0Inter) node1Inter = numpy.array(node1Inter) trisInter = numpy.array(trisInter) dNodeLocal = dStart + distances dStart += segment.length weights = numpy.zeros((len(trisInter), nHorizWeights)) cellIndices = numpy.zeros((len(trisInter), nHorizWeights), int) for index in range(3): weights[:, index] = (nodeWeights * nodeCellWeights[trisInter, node0Inter, index]) cellIndices[:, index] = \ nodeCellIndices[trisInter, node0Inter, index] weights[:, index+3] = ((1.0 - nodeWeights) * nodeCellWeights[trisInter, node1Inter, index]) cellIndices[:, index+3] = \ nodeCellIndices[trisInter, node1Inter, index] if first: xOut = xIntersection yOut = yIntersection dNode = dNodeLocal tris = trisInter nodes = node0Inter interpCells = cellIndices cellWeights = weights first = False else: xOut = numpy.append(xOut, xIntersection) yOut = numpy.append(yOut, yIntersection) dNode = numpy.append(dNode, dNodeLocal) tris = numpy.concatenate((tris, trisInter)) nodes = numpy.concatenate((nodes, node0Inter)) interpCells = numpy.concatenate((interpCells, cellIndices), axis=0) cellWeights = numpy.concatenate((cellWeights, weights), axis=0) dTransect[segIndex + 1] = dStart zOut = numpy.zeros(xOut.shape) z = xarray.zeros_like(x) epsilon = 1e-6*subdivisionRes dNode, xOut, yOut, zOut, tris, nodes, interpCells, cellWeights = \ _sort_intersections(dNode, tris, nodes, xOut, yOut, zOut, interpCells, cellWeights, epsilon) dNode, xOut, yOut, zOut, tris, nodes, interpCells, cellWeights = \ _update_start_end_triangles(tris, nodes, interpCells, cellWeights, dNode, xOut, yOut, zOut, dStart, x, y, z) nSegments = len(xOut)//2 nBounds = 2 cellIndices = dsTris.triCellIndices.values[tris] nodes = nodes.reshape((nSegments, nBounds)) dNode = dNode.reshape((nSegments, nBounds)) dsOut = xarray.Dataset() dsOut['xNode'] = (('nSegments', 'nBounds'), xOut.reshape((nSegments, nBounds))) dsOut['yNode'] = (('nSegments', 'nBounds'), yOut.reshape((nSegments, nBounds))) dsOut['dNode'] = (('nSegments', 'nBounds'), dNode) dsOut['horizTriangleIndices'] = ('nSegments', tris) dsOut['horizCellIndices'] = ('nSegments', cellIndices) dsOut['horizTriangleNodeIndices'] = (('nSegments', 'nBounds'), nodes) dsOut['interpHorizCellIndices'] = \ (('nSegments', 'nBounds', 'nHorizWeights'), interpCells.reshape((nSegments, nBounds, nHorizWeights))) dsOut['interpHorizCellWeights'] = \ (('nSegments', 'nBounds', 'nHorizWeights'), cellWeights.reshape((nSegments, nBounds, nHorizWeights))) transectIndicesOnHorizNode = numpy.zeros(dNode.shape, int) transectWeightsOnHorizNode = numpy.zeros(dNode.shape) for segIndex in range(len(dTransect)-1): d0 = dTransect[segIndex] d1 = dTransect[segIndex+1] mask = numpy.logical_and(dNode >= d0, dNode < d1) transectIndicesOnHorizNode[mask] = segIndex transectWeightsOnHorizNode[mask] = (d1 - dNode[mask])/(d1 - d0) # last index will get missed by the mask and needs to be handled as a # special case transectIndicesOnHorizNode[-1, 1] = len(dTransect)-2 transectWeightsOnHorizNode[-1, 1] = 0.0 dsOut['xTransect'] = x dsOut['yTransect'] = y dsOut['dTransect'] = (xTransect.dims, dTransect) dsOut['transectIndicesOnHorizNode'] = (('nSegments', 'nBounds'), transectIndicesOnHorizNode) dsOut['transectWeightsOnHorizNode'] = (('nSegments', 'nBounds'), transectWeightsOnHorizNode) return dsOut
[docs]def subdivide_great_circle(x, y, z, maxRes, earthRadius): """ Subdivide each segment of the transect so the horizontal resolution approximately matches the requested resolution Uses a formula for interpolating unit vectors on the sphere from https://en.wikipedia.org/wiki/Slerp Parameters ---------- x, y, z : numpy.array The Cartesian coordinates of a transect, where the number of segments is ``len(x) - 1``. ``x``, ``y`` and ``z`` are of the same length. maxRes : float The maximum allowed spacing in m after subdivision earthRadius : float The radius of the Earth in m Returns ------- xOut, yOut, zOut : numpy.array The transect subdivided into segments with segment length at most ``maxRes``. All the points in ``x``, ``y`` and ``z`` are guaranteed to be included. dIn : numpy.array The distance along the transect before subdivision dOut : numpy.array The distance along the transect after subdivision """ angularDistance = _angular_distance(x=x, y=y, z=z) dx = angularDistance * earthRadius nSegments = numpy.maximum( (dx / maxRes + 0.5).astype(int), 1) dIn = numpy.zeros(x.shape) dIn[1:] = numpy.cumsum(dx) frac = [] outIndices = [] delta = [] for index in range(len(dIn) - 1): n = nSegments[index] frac.extend(numpy.arange(0, n)/n) outIndices.extend(index*numpy.ones(n, int)) delta.extend(angularDistance[index]*numpy.ones(n)) frac.append(1.) outIndices.append(len(dIn) - 2) delta.append(angularDistance[-1]) frac = numpy.array(frac) delta = numpy.array(delta) outIndices = numpy.array(outIndices) denom = 1./numpy.sin(delta) a = denom*numpy.sin((1.-frac)*delta) b = denom*numpy.sin(frac*delta) xOut = a*x[outIndices] + b*x[outIndices+1] yOut = a*y[outIndices] + b*y[outIndices+1] zOut = a*z[outIndices] + b*z[outIndices+1] dOut = (-frac + 1.)*dIn[outIndices] + frac*dIn[outIndices+1] return xOut, yOut, zOut, dIn, dOut
[docs]def cartesian_to_great_circle_distance(x, y, z, earth_radius): """ Cartesian transect points to great-circle distance Parameters ---------- x, y, z : numpy.array Cartesian coordinates along a transect earth_radius : float The radius of the earth Returns ------- distance : numpy.array The distance along the transect """ distance = numpy.zeros(x.shape) for segIndex in range(len(x)-1): transectv0 = Vector(x[segIndex], y[segIndex], z[segIndex]) transectv1 = Vector(x[segIndex+1], y[segIndex+1], z[segIndex+1]) distance[segIndex+1] = distance[segIndex] + \ earth_radius*_angular_distance(first=transectv0, second=transectv1) return distance
def subdivide_planar(x, y, maxRes): """ Subdivide each segment of the transect so the horizontal resolution approximately matches the requested resolution Uses a formula for interpolating unit vectors on the sphere from https://en.wikipedia.org/wiki/Slerp Parameters ---------- x, y: numpy.array The planar coordinates of a transect, where the number of segments is ``len(x) - 1``. ``x`` and ``y`` are of the same length. maxRes : float The maximum allowed spacing in m after subdivision Returns ------- xOut, yOut : numpy.array The transect subdivided into segments with segment length at most ``maxRes``. All the points in ``x`` and ``y`` are guaranteed to be included. dIn : numpy.array The distance along the transect before subdivision dOut : numpy.array The distance along the transect after subdivision """ dx = numpy.zeros(len(x)-1) for index in range(len(x)-1): start = Point(x[index], y[index]) end = Point(x[index+1], y[index+1]) segment = LineString([start, end]) dx[index] = segment.length nSegments = numpy.maximum( (dx / maxRes + 0.5).astype(int), 1) dIn = numpy.zeros(x.shape) dIn[1:] = numpy.cumsum(dx) frac = [] outIndices = [] for index in range(len(dIn) - 1): n = nSegments[index] frac.extend(numpy.arange(0, n)/n) outIndices.extend(index*numpy.ones(n, int)) frac.append(1.) outIndices.append(len(dIn) - 2) frac = numpy.array(frac) outIndices = numpy.array(outIndices) xOut = (-frac + 1.)*x[outIndices] + frac*x[outIndices+1] yOut = (-frac + 1.)*y[outIndices] + frac*y[outIndices+1] dOut = (-frac + 1.)*dIn[outIndices] + frac*dIn[outIndices+1] return xOut, yOut, dIn, dOut def _sort_intersections(dNode, tris, nodes, xOut, yOut, zOut, interpCells, cellWeights, epsilon): """ sort nodes by distance """ sortIndices = numpy.argsort(dNode) dSorted = dNode[sortIndices] trisSorted = tris[sortIndices] nodesAreSame = numpy.abs(dSorted[1:] - dSorted[:-1]) < epsilon if nodesAreSame[0]: # the first two nodes are the same, so the first transect point is in a # triangle, and we need to figure out which if trisSorted[1] == trisSorted[2] or trisSorted[1] == trisSorted[3]: # the first transect point is in trisSorted[0], so the first two # nodes are in the right order indices = [0, 1] elif trisSorted[0] == trisSorted[2] or trisSorted[0] == trisSorted[3]: # the first transect point is in trisSorted[1], so the first two # nodes need to be swapped indices = [1, 0] else: raise ValueError('Couldn\'t find an order for the first two nodes') else: # the first transect point is outside of an MPAS cell indices = [0] while len(indices) < len(sortIndices): index = len(indices) currentTri = trisSorted[indices[-1]] if index < len(nodesAreSame) and nodesAreSame[index]: # the next two nodes are the same, so we need to know which # corresponds to the current triangle if trisSorted[index] == currentTri: # the first node is in the current triangle, so add the next # two nodes in the current order indices.extend([index, index+1]) elif trisSorted[index+1] == currentTri: # the second node is in the current triangle, so add the next # two nodes in swapped order indices.extend([index+1, index]) else: print(trisSorted[index:index+2], currentTri) raise ValueError('Couldn\'t find an order for nodes {} and ' '{}'.format(index, index+1)) else: # the next node is a boundary of the MPAS domain, so there is no # ambiguity about order and we just add it indices.extend([index]) indices = sortIndices[indices] dNode = dNode[indices] xOut= xOut[indices] yOut = yOut[indices] zOut = zOut[indices] tris = tris[indices] nodes = nodes[indices] interpCells = interpCells[indices, :] cellWeights = cellWeights[indices, :] return dNode, xOut, yOut, zOut, tris, nodes, interpCells, cellWeights def _update_start_end_triangles(tris, nodes, interpCells, cellWeights, dNode, xOut, yOut, zOut, dStart, x, y, z): """ figure out if the end points of the transect are in a triangle and add tris, nodes, interpCells and cellWeights if so """ if len(tris) >= 2 and tris[0] != tris[1]: # the starting point is in a triangle so we need to duplicate the first # entry in several fields to handle this tris = numpy.concatenate((tris[0:1], tris)) nodes = numpy.concatenate((nodes[0:1], nodes)) interpCells = numpy.concatenate((interpCells[0:1, :], interpCells), axis=0) cellWeights = numpy.concatenate((cellWeights[0:1, :], cellWeights), axis=0) dNode = numpy.append(numpy.array([0.]), dNode) xOut = numpy.append(x[0].values, xOut) yOut = numpy.append(y[0].values, yOut) zOut = numpy.append(z[0].values, zOut) if len(tris) >= 2 and tris[-1] != tris[-2]: # the end point is in a triangle so we need to add final entries or # duplicate the last entry in several fields to handle this tris = numpy.concatenate((tris, tris[-1:])) nodes = numpy.concatenate((nodes, nodes[-1:])) interpCells = numpy.concatenate((interpCells, interpCells[-1:, :]), axis=0) cellWeights = numpy.concatenate((cellWeights, cellWeights[-1:, :]), axis=0) dNode = numpy.append(dNode, dStart) xOut = numpy.append(xOut, x[-1].values) yOut = numpy.append(yOut, y[-1].values) zOut = numpy.append(zOut, z[-1].values) assert(numpy.all(tris[0::2] == tris[1::2])) tris = tris[0::2] return dNode, xOut, yOut, zOut, tris, nodes, interpCells, cellWeights def _lon_lat_to_cartesian(lon, lat, earth_radius, degrees): """Convert from lon/lat to Cartesian x, y, z""" if degrees: lon = numpy.deg2rad(lon) lat = numpy.deg2rad(lat) x = earth_radius * numpy.cos(lat) * numpy.cos(lon) y = earth_radius * numpy.cos(lat) * numpy.sin(lon) z = earth_radius * numpy.sin(lat) return x, y, z def _cartesian_to_lon_lat(x, y, z, earth_radius, degrees): """Convert from Cartesian x, y, z to lon/lat""" lon = numpy.arctan2(y, x) lat = numpy.arcsin(z/earth_radius) if degrees: lon = numpy.rad2deg(lon) lat = numpy.rad2deg(lat) return lon, lat def _angular_distance(x=None, y=None, z=None, first=None, second=None): """ Compute angular distance between points on the sphere, following: https://en.wikipedia.org/wiki/Great-circle_distance Parameters ---------- x, y, z : numpy.array, optional The cartsian coordinates of a transect, where the number of segments is ``len(x) - 1``. ``x``, ``y`` and ``z`` are of the same length and all must be present if ``first`` and ``second`` are not provided. first, second : Vector The start and end points of each segment of the transect, where the ``x``, ``y``, and ``z`` attributes of each vector are ``numpy.array`` objects. Returns ------- angularDistance : numpy.array The angular distance (in radians) between segments of the transect. """ if first is None or second is None: first = Vector(x[0:-1], y[0:-1], z[0:-1]) second = Vector(x[1:], y[1:], z[1:]) angularDistance = numpy.arctan2(_mag(_cross(first, second)), _dot(first, second)) return angularDistance def _intersects(a1, a2, b1, b2): """ Based on https://stackoverflow.com/a/26669130/7728169 Determine if the great circle arc from ``a1`` to ``a2`` intersects that from ``b1`` to ``b2``. Parameters ---------- a1, a2, b1, b2 : Vector Cartesian coordinates of the end points of two great circle arcs. The types of the attributes ``x``, ``y``, and ``z`` must either be ``numpy.arrays`` of identical size for all 4 vectors (in which case intersections are found element-wise), or scalars for at least one of either the ``a``s or the ``b``s. Returns ------- intersect : numpy.array A boolean array of the same size as the ``a``s or the ``b``s, whichever is greater, indicating if the particular pair of arcs intersects """ return numpy.logical_and(_straddles(a1, a2, b1, b2), _straddles(b1, b2, a1, a2)) def _intersection(a1, a2, b1, b2): """ Based on https://stackoverflow.com/a/26669130/7728169 Find the intersection point between great circle arc from ``a1`` to ``a2`` and from ``b1`` to ``b2``. The arcs should have already have been found to intersect by calling ``_intersects()`` Parameters ---------- a1, a2, b1, b2 : Vector Cartesian coordinates of the end points of two great circle arcs. The types of the attributes ``x``, ``y``, and ``z`` must either be ``numpy.arrays`` of identical size for all 4 vectors (in which case intersections are found element-wise), or scalars for at least one of either the ``a``s or the ``b``s. Returns ------- points : Vector An array of Cartesian points *on the unit sphere* indicating where the arcs intersect """ points = _cross(_cross(a1, a2), _cross(b1, b2)) s = numpy.sign(_det(a1, b1, b2))/_mag(points) points = Vector(s*points.x, s*points.y, s*points.z) return points def _straddles(a1, a2, b1, b2): """ Based on https://stackoverflow.com/a/26669130/7728169 Determines if the great circle segment determined by (a1, a2) straddles the great circle determined by (b1, b2) Parameters ---------- a1, a2, b1, b2 : Vector Cartesian coordinates of the end points of two great circle arcs. The types of the attributes ``x``, ``y``, and ``z`` must either be ``numpy.arrays`` of identical size for all 4 vectors (in which case intersections are found element-wise), or scalars for at least one of either the ``a``s or the ``b``s. Returns ------- straddle : numpy.array A boolean array of the same size as the ``a``s or the ``b``s, whichever is greater, indicating if the great circle segment determined by (a1, a2) straddles the great circle determined by (b1, b2) """ return _det(a1, b1, b2) * _det(a2, b1, b2) < 0 class Vector: """ A class for representing Cartesian vectors with ``x``, ``y`` and ``z`` components that are either ``float`` or ``numpy.array`` objects of identical size. """ def __init__(self, x, y, z): self.x = x self.y = y self.z = z def _dot(v1, v2): """The dot product between two ``Vector`` objects ``v1`` and ``v2``""" return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z def _cross(v1, v2): """The cross product between two ``Vector`` objects ``v1`` and ``v2``""" return Vector(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x) def _det(v1, v2, v3): """The determinant of the matrix defined by the three ``Vector`` objects""" return _dot(v1, _cross(v2, v3)) def _mag(v): """The magnitude of the ``Vector`` object ``v``""" return numpy.sqrt(_dot(v, v))