Source code for mpas_tools.mesh.mask

import xarray as xr
import numpy
from scipy.spatial import KDTree
import shapely.geometry
import shapely.ops
from shapely.geometry import box, Polygon, MultiPolygon, GeometryCollection
from shapely.strtree import STRtree
import progressbar
from functools import partial
import argparse
from igraph import Graph

from geometric_features import read_feature_collection

from mpas_tools.transects import subdivide_great_circle, \
    lon_lat_to_cartesian, cartesian_to_lon_lat
from mpas_tools.parallel import create_pool
from mpas_tools.io import write_netcdf
from mpas_tools.logging import LoggingContext
from mpas_tools.cime.constants import constants


[docs]def compute_mpas_region_masks(dsMesh, fcMask, maskTypes=('cell', 'vertex'), logger=None, pool=None, chunkSize=1000, showProgress=False, subdivisionThreshold=30.): """ Use shapely and processes to create a set of masks from a feature collection made up of regions (polygons) Parameters ---------- dsMesh : xarray.Dataset An MPAS mesh on which the masks should be created fcMask : geometric_features.FeatureCollection A feature collection containing features to use to create the mask maskTypes : tuple of {'cell', 'edge', 'vertex'}, optional Which type(s) of masks to make. Masks are created based on whether the latitude and longitude associated with each of these locations (e.g. ``dsMesh.latCell`` and ``dsMesh.lonCell`` for ``'cell'``) are inside or outside of the regions in ``fcMask``. logger : logging.Logger, optional A logger for the output if not stdout pool : multiprocessing.Pool, optional A pool for performing multiprocessing chunkSize : int, optional The number of cells, vertices or edges that are processed in one operation. Experimentation has shown that 1000 is a reasonable compromise between dividing the work into sufficient subtasks to distribute the load and having sufficient work for each thread. showProgress : bool, optional Whether to show a progress bar subdivisionThreshold : float, optional A threshold in degrees (lon or lat) above which the mask region will be subdivided into smaller polygons for faster intersection checking Returns ------- dsMask : xarray.Dataset The masks """ suffixes = {'cell': 'Cell', 'edge': 'Edge', 'vertex': 'Vertex'} dims = {'cell': 'nCells', 'edge': 'nEdges', 'vertex': 'nVertices'} dsMasks = xr.Dataset() for maskType in maskTypes: suffix = suffixes[maskType] dim = dims[maskType] lonName = 'lon{}'.format(suffix) latName = 'lat{}'.format(suffix) lat = numpy.rad2deg(dsMesh[latName].values) # transform longitudes to [-180, 180) lon = numpy.mod(numpy.rad2deg(dsMesh[lonName].values) + 180., 360.) - 180. if logger is not None: logger.info(' Computing {} masks:'.format(maskType)) # create shapely geometry for lon and lat points = [shapely.geometry.Point(x, y) for x, y in zip(lon, lat)] regionNames, masks, properties, nChar = _compute_region_masks( fcMask, points, logger, pool, chunkSize, showProgress, subdivisionThreshold) nPoints = len(points) if logger is not None: logger.info(' Adding masks to dataset...') nRegions = len(regionNames) # create a new data array for masks masksVarName = 'region{}Masks'.format(suffix) dsMasks[masksVarName] = \ ((dim, 'nRegions'), numpy.zeros((nPoints, nRegions), dtype=int)) for index in range(nRegions): mask = masks[index] dsMasks[masksVarName][:, index] = numpy.array(mask, dtype=int) if 'regionNames' not in dsMasks: # create a new data array for mask names dsMasks['regionNames'] = (('nRegions',), numpy.zeros((nRegions,), dtype='|S{}'.format(nChar))) for index in range(nRegions): dsMasks['regionNames'][index] = regionNames[index] for propertyName in properties: if propertyName not in dsMasks: dsMasks[propertyName] = (('nRegions',), properties[propertyName]) if logger is not None: logger.info(' Done.') return dsMasks
def entry_point_compute_mpas_region_masks(): """ Entry point for ``compute_mpas_region_masks()``""" parser = argparse.ArgumentParser() parser.add_argument("-m", "--mesh_file_name", dest="mesh_file_name", type=str, required=True, help="An MPAS mesh file") parser.add_argument("-g", "--geojson_file_name", dest="geojson_file_name", type=str, required=True, help="An Geojson file containing mask regions") parser.add_argument("-o", "--mask_file_name", dest="mask_file_name", type=str, required=True, help="An output MPAS region masks file") parser.add_argument("-t", "--mask_types", nargs='+', dest="mask_types", type=str, help="Which type(s) of masks to make: cell, edge or " "vertex. Default is cell and vertex.") parser.add_argument("-c", "--chunk_size", dest="chunk_size", type=int, default=1000, help="The number of cells, vertices or edges that are " "processed in one operation") parser.add_argument("--show_progress", dest="show_progress", action="store_true", help="Whether to show a progress bar") parser.add_argument("-s", "--subdivision", dest="subdivision", type=float, default=30., help="A threshold in degrees (lon or lat) above which " "the mask region will be subdivided into smaller " "polygons for faster intersection checking") parser.add_argument( "--process_count", required=False, dest="process_count", type=int, help="The number of processes to use to compute masks. The " "default is to use all available cores") parser.add_argument( "--multiprocessing_method", dest="multiprocessing_method", default='forkserver', help="The multiprocessing method use for python mask creation " "('fork', 'spawn' or 'forkserver')") parser.add_argument("--format", dest="format", type=str, help="NetCDF file format") parser.add_argument("--engine", dest="engine", type=str, help="NetCDF output engine") args = parser.parse_args() dsMesh = xr.open_dataset(args.mesh_file_name, decode_cf=False, decode_times=False) fcMask = read_feature_collection(args.geojson_file_name) pool = create_pool(process_count=args.process_count, method=args.multiprocessing_method) if args.mask_types is None: args.mask_types = ('cell', 'vertex') with LoggingContext('compute_mpas_region_masks') as logger: dsMasks = compute_mpas_region_masks( dsMesh=dsMesh, fcMask=fcMask, maskTypes=args.mask_types, logger=logger, pool=pool, chunkSize=args.chunk_size, showProgress=args.show_progress, subdivisionThreshold=args.subdivision) write_netcdf(dsMasks, args.mask_file_name, format=args.format, engine=args.engine)
[docs]def compute_mpas_transect_masks(dsMesh, fcMask, earthRadius, maskTypes=('cell', 'edge', 'vertex'), logger=None, pool=None, chunkSize=1000, showProgress=False, subdivisionResolution=10e3, addEdgeSign=False): """ Use shapely and processes to create a set of masks from a feature collection made up of transects (line strings) Parameters ---------- dsMesh : xarray.Dataset An MPAS mesh on which the masks should be created fcMask : geometric_features.FeatureCollection A feature collection containing features to use to create the mask earthRadius : float The radius of the earth in meters maskTypes : tuple of {'cell', 'edge', 'vertex'}, optional Which type(s) of masks to make. Masks are created based on whether the latitude and longitude associated with each of these locations (e.g. ``dsMesh.latCell`` and ``dsMesh.lonCell`` for ``'cell'``) are inside or outside of the transects in ``fcMask``. logger : logging.Logger, optional A logger for the output if not stdout pool : multiprocessing.Pool, optional A pool for performing multiprocessing chunkSize : int, optional The number of cells, vertices or edges that are processed in one operation. Experimentation has shown that 1000 is a reasonable compromise between dividing the work into sufficient subtasks to distribute the load and having sufficient work for each thread. showProgress : bool, optional Whether to show a progress bar subdivisionResolution : float, optional The maximum resolution (in meters) of segments in a transect. If a transect is too coarse, it will be subdivided. Pass ``None`` for no subdivision. addEdgeSign : bool, optional Whether to add the ``edgeSign`` variable, which requires significant extra computation Returns ------- dsMask : xarray.Dataset The masks """ suffixes = {'cell': 'Cell', 'edge': 'Edge', 'vertex': 'Vertex'} dims = {'cell': 'nCells', 'edge': 'nEdges', 'vertex': 'nVertices'} dsMasks = xr.Dataset() for maskType in maskTypes: suffix = suffixes[maskType] dim = dims[maskType] if logger is not None: logger.info(' Computing {} masks:'.format(maskType)) polygons, nPolygons, duplicatePolygons = \ _get_polygons(dsMesh, maskType) transectNames, masks, properties, nChar, shapes = \ _compute_transect_masks(fcMask, polygons, logger, pool, chunkSize, showProgress, subdivisionResolution, earthRadius) if logger is not None: if addEdgeSign and maskType == 'edge': logger.info(' Adding masks and edge signs to dataset...') else: logger.info(' Adding masks to dataset...') nTransects = len(transectNames) # create a new data array for masks masksVarName = 'transect{}Masks'.format(suffix) dsMasks[masksVarName] = \ ((dim, 'nTransects'), numpy.zeros((nPolygons, nTransects), dtype=int)) if addEdgeSign and maskType == 'edge': dsMasks['transectEdgeMaskSigns'] = \ ((dim, 'nTransects'), numpy.zeros((nPolygons, nTransects), dtype=int)) for index in range(nTransects): maskAndDuplicates = masks[index] mask = maskAndDuplicates[0:nPolygons] mask[duplicatePolygons] = \ numpy.logical_or(mask[duplicatePolygons], maskAndDuplicates[nPolygons:]) dsMasks[masksVarName][:, index] = numpy.array(mask, dtype=int) if addEdgeSign and maskType == 'edge': print(transectNames[index]) dsMasks['transectEdgeMaskSigns'][:, index] = \ _compute_edge_sign(dsMesh, mask, shapes[index]) if 'transectNames' not in dsMasks: # create a new data array for mask names dsMasks['transectNames'] = \ (('nTransects',), numpy.zeros((nTransects,), dtype='|S{}'.format(nChar))) for index in range(nTransects): dsMasks['transectNames'][index] = transectNames[index] for propertyName in properties: if propertyName not in dsMasks: dsMasks[propertyName] = (('nTransects',), properties[propertyName]) if logger is not None: logger.info(' Done.') return dsMasks
def entry_point_compute_mpas_transect_masks(): """ Entry point for ``compute_mpas_transect_masks()``""" parser = argparse.ArgumentParser() parser.add_argument("-m", "--mesh_file_name", dest="mesh_file_name", type=str, required=True, help="An MPAS mesh file") parser.add_argument("-g", "--geojson_file_name", dest="geojson_file_name", type=str, required=True, help="An Geojson file containing transects") parser.add_argument("-o", "--mask_file_name", dest="mask_file_name", type=str, required=True, help="An output MPAS transect masks file") parser.add_argument("-t", "--mask_types", nargs='+', dest="mask_types", type=str, help="Which type(s) of masks to make: cell, edge or " "vertex. Default is cell, edge and vertex.") parser.add_argument("-c", "--chunk_size", dest="chunk_size", type=int, default=1000, help="The number of cells, vertices or edges that are " "processed in one operation") parser.add_argument("--show_progress", dest="show_progress", action="store_true", help="Whether to show a progress bar") parser.add_argument("-s", "--subdivision", dest="subdivision", type=float, help="The maximum resolution (in meters) of segments " "in a transect. If a transect is too coarse, it " "will be subdivided. Default is no subdivision.") parser.add_argument( "--process_count", required=False, dest="process_count", type=int, help="The number of processes to use to compute masks. The " "default is to use all available cores") parser.add_argument( "--multiprocessing_method", dest="multiprocessing_method", default='forkserver', help="The multiprocessing method use for python mask creation " "('fork', 'spawn' or 'forkserver')") parser.add_argument("--add_edge_sign", dest="add_edge_sign", action="store_true", help="Whether to add the transectEdgeMaskSigns " "variable") parser.add_argument("--format", dest="format", type=str, help="NetCDF file format") parser.add_argument("--engine", dest="engine", type=str, help="NetCDF output engine") args = parser.parse_args() dsMesh = xr.open_dataset(args.mesh_file_name, decode_cf=False, decode_times=False) fcMask = read_feature_collection(args.geojson_file_name) pool = create_pool(process_count=args.process_count, method=args.multiprocessing_method) if args.mask_types is None: args.mask_types = ('cell', 'edge', 'vertex') earth_radius = constants['SHR_CONST_REARTH'] with LoggingContext('compute_mpas_transect_masks') as logger: dsMasks = compute_mpas_transect_masks( dsMesh=dsMesh, fcMask=fcMask, earthRadius=earth_radius, maskTypes=args.mask_types, logger=logger, pool=pool, chunkSize=args.chunk_size, showProgress=args.show_progress, subdivisionResolution=args.subdivision, addEdgeSign=args.add_edge_sign) write_netcdf(dsMasks, args.mask_file_name, format=args.format, engine=args.engine)
[docs]def compute_mpas_flood_fill_mask(dsMesh, fcSeed, logger=None, workers=-1): """ Flood fill from the given set of seed points to create a contiguous mask. The flood fill operates using cellsOnCell, starting from the cells whose centers are closest to the seed points. Parameters ---------- dsMesh : xarray.Dataset An MPAS mesh on which the masks should be created fcSeed : geometric_features.FeatureCollection A feature collection containing points at which to start the flood fill logger : logging.Logger, optional A logger for the output if not stdout workers : int, optional The number of threads used for finding nearest neighbors. The default is all available threads (``workers=-1``) Returns ------- dsMask : xarray.Dataset The masks """ dsMasks = xr.Dataset() lat = numpy.rad2deg(dsMesh.latCell.values) # transform longitudes to [-180, 180) lon = numpy.mod(numpy.rad2deg(dsMesh.lonCell.values) + 180., 360.) - 180. if logger is not None: logger.info(' Computing flood fill mask on cells:') mask = _compute_seed_mask(fcSeed, lon, lat, workers) cellsOnCell = dsMesh.cellsOnCell.values - 1 mask = _flood_fill_mask(mask, cellsOnCell) if logger is not None: logger.info(' Adding masks to dataset...') # create a new data array for the mask masksVarName = 'cellSeedMask' dsMasks[masksVarName] = (('nCells',), numpy.array(mask, dtype=int)) if logger is not None: logger.info(' Done.') return dsMasks
def entry_point_compute_mpas_flood_fill_mask(): """ Entry point for ``compute_mpas_flood_fill_mask()``""" parser = argparse.ArgumentParser() parser.add_argument("-m", "--mesh_file_name", dest="mesh_file_name", type=str, required=True, help="An MPAS mesh file") parser.add_argument("-g", "--geojson_file_name", dest="geojson_file_name", type=str, required=True, help="An Geojson file containing points at which to " "start the flood fill") parser.add_argument("-o", "--mask_file_name", dest="mask_file_name", type=str, required=True, help="An output MPAS region masks file") parser.add_argument("--format", dest="format", type=str, help="NetCDF file format") parser.add_argument("--engine", dest="engine", type=str, help="NetCDF output engine") args = parser.parse_args() dsMesh = xr.open_dataset(args.mesh_file_name, decode_cf=False, decode_times=False) fcSeed = read_feature_collection(args.geojson_file_name) with LoggingContext('compute_mpas_flood_fill_mask') as logger: dsMasks = compute_mpas_flood_fill_mask( dsMesh=dsMesh, fcSeed=fcSeed, logger=logger) write_netcdf(dsMasks, args.mask_file_name, format=args.format, engine=args.engine)
[docs]def compute_lon_lat_region_masks(lon, lat, fcMask, logger=None, pool=None, chunkSize=1000, showProgress=False, subdivisionThreshold=30.): """ Use shapely and processes to create a set of masks from a feature collection made up of regions (polygons) on a tensor lon/lat grid Parameters ---------- lon : numpy.ndarray A 1D array of longitudes in degrees between -180 and 180 lat : numpy.ndarray A 1D array of latitudes in degrees between -90 and 90 fcMask : geometric_features.FeatureCollection A feature collection containing features to use to create the mask logger : logging.Logger, optional A logger for the output if not stdout pool : multiprocessing.Pool, optional A pool for performing multiprocessing chunkSize : int, optional The number of cells, vertices or edges that are processed in one operation. Experimentation has shown that 1000 is a reasonable compromise between dividing the work into sufficient subtasks to distribute the load and having sufficient work for each thread. showProgress : bool, optional Whether to show a progress bar subdivisionThreshold : float, optional A threshold in degrees (lon or lat) above which the mask region will be subdivided into smaller polygons for faster intersection checking Returns ------- dsMask : xarray.Dataset The masks """ dsMasks = xr.Dataset() Lon, Lat = numpy.meshgrid(lon, lat) shape = Lon.shape Lon = Lon.ravel() Lat = Lat.ravel() # create shapely geometry for lon and lat points = [shapely.geometry.Point(x, y) for x, y in zip(Lon, Lat)] regionNames, masks, properties, nChar = _compute_region_masks( fcMask, points, logger, pool, chunkSize, showProgress, subdivisionThreshold) nlon = len(lon) nlat = len(lat) if logger is not None: logger.info(' Adding masks to dataset...') nRegions = len(regionNames) # create a new data array for masks masksVarName = 'regionMasks' dsMasks[masksVarName] = \ (('lat', 'lon', 'nRegions'), numpy.zeros((nlat, nlon, nRegions), dtype=int)) for index in range(nRegions): mask = masks[index] dsMasks[masksVarName][:, :, index] = \ numpy.array(mask.reshape(shape), dtype=int) # create a new data array for mask names dsMasks['regionNames'] = (('nRegions',), numpy.zeros((nRegions,), dtype='|S{}'.format(nChar))) for index in range(nRegions): dsMasks['regionNames'][index] = regionNames[index] for propertyName in properties: if propertyName not in dsMasks: dsMasks[propertyName] = (('nRegions',), properties[propertyName]) if logger is not None: logger.info(' Done.') return dsMasks
def entry_point_compute_lon_lat_region_masks(): """ Entry point for ``compute_lon_lat_region_masks()``""" parser = argparse.ArgumentParser() parser.add_argument("-i", "--grid_file_name", dest="grid_file_name", type=str, required=True, help="An input lon/lat grid file") parser.add_argument("--lon", dest="lon", default="lon", type=str, help="The name of the longitude coordinate") parser.add_argument("--lat", dest="lat", default="lat", type=str, help="The name of the latitude coordinate") parser.add_argument("-g", "--geojson_file_name", dest="geojson_file_name", type=str, required=True, help="An Geojson file containing mask regions") parser.add_argument("-o", "--mask_file_name", dest="mask_file_name", type=str, required=True, help="An output MPAS region masks file") parser.add_argument("-c", "--chunk_size", dest="chunk_size", type=int, default=1000, help="The number of grid points that are " "processed in one operation") parser.add_argument("--show_progress", dest="show_progress", action="store_true", help="Whether to show a progress bar") parser.add_argument("-s", "--subdivision", dest="subdivision", type=float, default=30., help="A threshold in degrees (lon or lat) above which " "the mask region will be subdivided into smaller " "polygons for faster intersection checking") parser.add_argument( "--process_count", required=False, dest="process_count", type=int, help="The number of processes to use to compute masks. The " "default is to use all available cores") parser.add_argument( "--multiprocessing_method", dest="multiprocessing_method", default='forkserver', help="The multiprocessing method use for python mask creation " "('fork', 'spawn' or 'forkserver')") parser.add_argument("--format", dest="format", type=str, help="NetCDF file format") parser.add_argument("--engine", dest="engine", type=str, help="NetCDF output engine") args = parser.parse_args() dsGrid = xr.open_dataset(args.grid_file_name, decode_cf=False, decode_times=False) lon = dsGrid[args.lon].values lat = dsGrid[args.lat].values fcMask = read_feature_collection(args.geojson_file_name) pool = create_pool(process_count=args.process_count, method=args.multiprocessing_method) with LoggingContext('compute_lon_lat_region_masks') as logger: dsMasks = compute_lon_lat_region_masks( lon=lon, lat=lat, fcMask=fcMask, logger=logger, pool=pool, chunkSize=args.chunk_size, showProgress=args.show_progress, subdivisionThreshold=args.subdivision) write_netcdf(dsMasks, args.mask_file_name, format=args.format, engine=args.engine) def compute_projection_grid_region_masks( lon, lat, fcMask, logger=None, pool=None, chunkSize=1000, showProgress=False, subdivisionThreshold=30., xdim='x', ydim='y'): """ Use shapely and processes to create a set of masks from a feature collection made up of regions (polygons) on a projection grid such as a polar-stereographic grid. Parameters ---------- lon : numpy.ndarray A 2D array of longitudes in degrees between -180 and 180 lat : numpy.ndarray A 2D array of latitudes in degrees between -90 and 90 fcMask : geometric_features.FeatureCollection A feature collection containing features to use to create the mask logger : logging.Logger, optional A logger for the output if not stdout pool : multiprocessing.Pool, optional A pool for performing multiprocessing chunkSize : int, optional The number of cells, vertices or edges that are processed in one operation. Experimentation has shown that 1000 is a reasonable compromise between dividing the work into sufficient subtasks to distribute the load and having sufficient work for each thread. showProgress : bool, optional Whether to show a progress bar subdivisionThreshold : float, optional A threshold in degrees (lon or lat) above which the mask region will be subdivided into smaller polygons for faster intersection checking xdim : str, optional The name of the x dimension ydim : str, optional The name of the y dimension Returns ------- dsMask : xarray.Dataset The masks """ dsMasks = xr.Dataset() # make sure -180 <= lon < 180 lon = numpy.mod(lon + 180., 360.) - 180. ny, nx = lon.shape # create shapely geometry for lon and lat points = [shapely.geometry.Point(x, y) for x, y in zip(lon.ravel(), lat.ravel())] regionNames, masks, properties, nChar = _compute_region_masks( fcMask, points, logger, pool, chunkSize, showProgress, subdivisionThreshold) if logger is not None: logger.info(' Adding masks to dataset...') nRegions = len(regionNames) # create a new data array for masks masksVarName = 'regionMasks' dsMasks[masksVarName] = \ ((ydim, xdim, 'nRegions'), numpy.zeros((ny, nx, nRegions), dtype=int)) for index in range(nRegions): mask = masks[index] dsMasks[masksVarName][:, :, index] = \ numpy.array(mask.reshape((ny, nx)), dtype=int) # create a new data array for mask names dsMasks['regionNames'] = (('nRegions',), numpy.zeros((nRegions,), dtype='|S{}'.format(nChar))) for index in range(nRegions): dsMasks['regionNames'][index] = regionNames[index] for propertyName in properties: if propertyName not in dsMasks: dsMasks[propertyName] = (('nRegions',), properties[propertyName]) if logger is not None: logger.info(' Done.') return dsMasks def entry_point_compute_projection_grid_region_masks(): """ Entry point for ``compute_projection_grid_region_masks()``""" parser = argparse.ArgumentParser() parser.add_argument("-i", "--grid_file_name", dest="grid_file_name", type=str, required=True, help="An input lon/lat grid file") parser.add_argument("--lon", dest="lon", default="lon", type=str, help="The name of the 2D longitude coordinate") parser.add_argument("--lat", dest="lat", default="lat", type=str, help="The name of the 2D latitude coordinate") parser.add_argument("-g", "--geojson_file_name", dest="geojson_file_name", type=str, required=True, help="An Geojson file containing mask regions") parser.add_argument("-o", "--mask_file_name", dest="mask_file_name", type=str, required=True, help="An output MPAS region masks file") parser.add_argument("-c", "--chunk_size", dest="chunk_size", type=int, default=1000, help="The number of grid points that are " "processed in one operation") parser.add_argument("--show_progress", dest="show_progress", action="store_true", help="Whether to show a progress bar") parser.add_argument("-s", "--subdivision", dest="subdivision", type=float, default=30., help="A threshold in degrees (lon or lat) above which " "the mask region will be subdivided into smaller " "polygons for faster intersection checking") parser.add_argument( "--process_count", required=False, dest="process_count", type=int, help="The number of processes to use to compute masks. The " "default is to use all available cores") parser.add_argument( "--multiprocessing_method", dest="multiprocessing_method", default='forkserver', help="The multiprocessing method use for python mask creation " "('fork', 'spawn' or 'forkserver')") parser.add_argument("--format", dest="format", type=str, help="NetCDF file format") parser.add_argument("--engine", dest="engine", type=str, help="NetCDF output engine") args = parser.parse_args() dsGrid = xr.open_dataset(args.grid_file_name, decode_cf=False, decode_times=False) lon = dsGrid[args.lon] lat = dsGrid[args.lat] ydim, xdim = lon.dims fcMask = read_feature_collection(args.geojson_file_name) pool = create_pool(process_count=args.process_count, method=args.multiprocessing_method) with LoggingContext('compute_lon_lat_region_masks') as logger: dsMasks = compute_projection_grid_region_masks( lon=lon.values, lat=lat.values, fcMask=fcMask, logger=logger, pool=pool, chunkSize=args.chunk_size, showProgress=args.show_progress, subdivisionThreshold=args.subdivision, xdim=xdim, ydim=ydim) write_netcdf(dsMasks, args.mask_file_name, format=args.format, engine=args.engine) def _compute_mask_from_shapes(shapes1, shapes2, func, pool, chunkSize, showProgress): """ If multiprocessing, break shapes2 into chunks and use multiprocessing to apply the given function one chunk at a time """ nShapes2 = len(shapes2) if pool is None: mask = func(shapes1, shapes2) else: nChunks = int(numpy.ceil(nShapes2 / chunkSize)) chunks = [] indices = [0] for iChunk in range(nChunks): start = iChunk * chunkSize end = min((iChunk + 1) * chunkSize, nShapes2) chunks.append(shapes2[start:end]) indices.append(end) partial_func = partial(func, shapes1) if showProgress: widgets = [' ', progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()] bar = progressbar.ProgressBar(widgets=widgets, maxval=nChunks).start() else: bar = None mask = numpy.zeros((nShapes2,), bool) for iChunk, maskChunk in \ enumerate(pool.imap(partial_func, chunks)): mask[indices[iChunk]:indices[iChunk + 1]] = maskChunk if showProgress: bar.update(iChunk + 1) if showProgress: bar.finish() return mask def _get_region_names_and_properties(fc): regionNames = [] for feature in fc.features: name = feature['properties']['name'] regionNames.append(name) propertyNames = set() for feature in fc.features: for propertyName in feature['properties']: if propertyName not in ['name', 'author', 'tags', 'component', 'object']: propertyNames.add(propertyName) properties = {} for propertyName in propertyNames: properties[propertyName] = [] for feature in fc.features: if propertyName in feature['properties']: propertyVal = feature['properties'][propertyName] properties[propertyName].append(propertyVal) else: properties[propertyName].append('') return regionNames, properties def _compute_region_masks(fcMask, points, logger, pool, chunkSize, showProgress, threshold): """ Build a region mask file from the given mesh and geojson file defining a set of regions. """ regionNames, properties = _get_region_names_and_properties(fcMask) masks = [] nChar = 0 for feature in fcMask.features: name = feature['properties']['name'] if logger is not None: logger.info(' {}'.format(name)) shape = shapely.geometry.shape(feature['geometry']) shapes = _katana(shape, threshold=threshold) mask = _compute_mask_from_shapes( shapes1=shapes, shapes2=points, func=_contains, pool=pool, chunkSize=chunkSize, showProgress=showProgress) nChar = max(nChar, len(name)) masks.append(mask) return regionNames, masks, properties, nChar def _contains(shapes, points): tree = STRtree(points) mask = numpy.zeros(len(points), dtype=bool) for shape in shapes: indicesInShape = tree.query(shape, predicate='covers') mask[indicesInShape] = True return mask def _katana(geometry, threshold, count=0, maxcount=250): """ From https://snorfalorpagus.net/blog/2016/03/13/splitting-large-polygons-for-faster-intersections/ Split a Polygon into two parts across it's shortest dimension Copyright (c) 2016, Joshua Arnott All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ bounds = geometry.bounds width = bounds[2] - bounds[0] height = bounds[3] - bounds[1] if max(width, height) <= threshold or count == maxcount: # either the polygon is smaller than the threshold, or the maximum # number of recursions has been reached return [geometry] if height >= width: # split left to right a = box(bounds[0], bounds[1], bounds[2], bounds[1]+height/2) b = box(bounds[0], bounds[1]+height/2, bounds[2], bounds[3]) else: # split top to bottom a = box(bounds[0], bounds[1], bounds[0]+width/2, bounds[3]) b = box(bounds[0]+width/2, bounds[1], bounds[2], bounds[3]) result = [] for d in (a, b,): c = geometry.intersection(d) if isinstance(c, GeometryCollection): c = c.geoms else: c = [c] for e in c: if isinstance(e, (Polygon, MultiPolygon)): result.extend(_katana(e, threshold, count+1, maxcount)) if count > 0: return result # convert multipart into singlepart final_result = [] for g in result: if isinstance(g, MultiPolygon): final_result.extend(g.geoms) else: final_result.append(g) return final_result def _compute_transect_masks(fcMask, polygons, logger, pool, chunkSize, showProgress, subdivisionResolution, earthRadius): """ Build a transect mask file from the given mesh and geojson file defining a set of transects. """ transectNames, properties = _get_region_names_and_properties(fcMask) masks = [] shapes = [] nChar = 0 for feature in fcMask.features: name = feature['properties']['name'] if logger is not None: logger.info(' {}'.format(name)) geom_type = feature['geometry']['type'] if geom_type == 'LineString': coordinates = [feature['geometry']['coordinates']] elif geom_type == 'MultiLineString': coordinates = feature['geometry']['coordinates'] else: raise ValueError('Unexpected geometry type {}'.format(geom_type)) new_coords = [] for coord_index, coords in enumerate(coordinates): if subdivisionResolution is None: new_coords.append(coords) else: lon, lat = zip(*coords) x, y, z = lon_lat_to_cartesian( lon, lat, earthRadius, degrees=True) x, y, z, _, _ = subdivide_great_circle( x, y, z, subdivisionResolution, earthRadius) lon, lat = cartesian_to_lon_lat( x, y, z, earthRadius, degrees=True) new_coords.append([list(a) for a in zip(lon, lat)]) if geom_type == 'LineString': shape = shapely.geometry.LineString(new_coords[0]) else: shape = shapely.geometry.MultiLineString(new_coords) mask = _compute_mask_from_shapes( shapes1=shape, shapes2=polygons, func=_intersects, pool=pool, chunkSize=chunkSize, showProgress=showProgress) nChar = max(nChar, len(name)) masks.append(mask) shapes.append(shape) return transectNames, masks, properties, nChar, shapes def _intersects(shape, polygons): tree = STRtree(polygons) mask = numpy.zeros(len(polygons), dtype=bool) indicesInShape = tree.query(shape, predicate='intersects') mask[indicesInShape] = True return mask def _get_polygons(dsMesh, maskType): if maskType == 'cell': # polygons are vertices on cell vertexIndices = dsMesh.verticesOnCell.values - 1 nVerticesOnCell = dsMesh.nEdgesOnCell.values maxVertices = vertexIndices.shape[1] for iVertex in range(maxVertices): mask = iVertex >= nVerticesOnCell # copy the last valid vertex vertexIndices[mask, iVertex] = \ vertexIndices[mask, nVerticesOnCell[mask]-1] lonVertex = dsMesh.lonVertex.values latVertex = dsMesh.latVertex.values lonCenter = dsMesh.lonCell.values elif maskType == 'vertex': # polygons are cells on vertex vertexIndices = dsMesh.cellsOnVertex.values - 1 maxVertices = vertexIndices.shape[1] firstValid = vertexIndices[:, 0] for iVertex in range(1, maxVertices): mask = firstValid < 0 firstValid[mask] = vertexIndices[mask, iVertex] assert(numpy.all(firstValid >= 0)) for iVertex in range(maxVertices): mask = vertexIndices[:, iVertex] < 0 vertexIndices[mask, iVertex] = firstValid[mask] lonVertex = dsMesh.lonCell.values latVertex = dsMesh.latCell.values lonCenter = dsMesh.lonVertex.values elif maskType == 'edge': # oh, dear, this is a bit more complicated. Polygons are kites # involving both vertices and cell centers verticesOnEdge = dsMesh.verticesOnEdge - 1 cellsOnEdge = dsMesh.cellsOnEdge - 1 nEdges = dsMesh.sizes['nEdges'] nCells = dsMesh.sizes['nCells'] vertexIndices = -1 * numpy.ones((nEdges, 4), int) vertexIndices[:, 0] = cellsOnEdge[:, 0] vertexIndices[:, 1] = verticesOnEdge[:, 0] + nCells vertexIndices[:, 2] = cellsOnEdge[:, 1] vertexIndices[:, 3] = verticesOnEdge[:, 1] + nCells # if there are invalid cells, just point to the next vertex; all # vertices on cell should be valid mask = vertexIndices[:, 0] < 0 vertexIndices[mask, 0] = vertexIndices[mask, 1] mask = vertexIndices[:, 2] < 0 vertexIndices[mask, 2] = vertexIndices[mask, 3] lonVertex = numpy.append(dsMesh.lonCell.values, dsMesh.lonVertex.values) latVertex = numpy.append(dsMesh.latCell.values, dsMesh.latVertex.values) lonCenter = dsMesh.lonEdge.values else: raise ValueError('Unknown mask type {}'.format(maskType)) assert numpy.all(vertexIndices >= 0) latVertex = numpy.rad2deg(latVertex) # transform longitudes to [-180, 180) lonVertex = numpy.mod(numpy.rad2deg(lonVertex) + 180., 360.) - 180. lonCenter = numpy.mod(numpy.rad2deg(lonCenter) + 180., 360.) - 180. lon = lonVertex[vertexIndices] lat = latVertex[vertexIndices] lon, lat, duplicatePolygons = _copy_dateline_lon_lat_vertices(lon, lat, lonCenter) nPolygons = len(lonCenter) polygons = [] for index in range(lon.shape[0]): coords = zip(lon[index, :], lat[index, :]) polygons.append(shapely.geometry.Polygon(coords)) return polygons, nPolygons, duplicatePolygons def _copy_dateline_lon_lat_vertices(lonVertex, latVertex, lonCenter): nPolygons, _ = lonVertex.shape lonDiff = lonVertex - lonCenter.reshape(nPolygons, 1) # which polygons have vertices that are out of range to the west? outOfRange = lonDiff < -180. duplicatePolygonsEast = numpy.flatnonzero(numpy.any(outOfRange, axis=1)) lonVertex[outOfRange] += 360. lonVertexToAdd = lonVertex[duplicatePolygonsEast, :] - 360. latVertexToAdd = latVertex[duplicatePolygonsEast, :] # which polygons have vertices that are out of range to the east? outOfRange = lonDiff >= 180. duplicatePolygonsWest = numpy.flatnonzero(numpy.any(outOfRange, axis=1)) lonVertex[outOfRange] -= 360. lonVertexToAdd = numpy.append(lonVertexToAdd, lonVertex[duplicatePolygonsWest, :] + 360., axis=0) latVertexToAdd = numpy.append(latVertexToAdd, latVertex[duplicatePolygonsWest, :], axis=0) lonVertex = numpy.append(lonVertex, lonVertexToAdd, axis=0) latVertex = numpy.append(latVertex, latVertexToAdd, axis=0) duplicatePolygons = numpy.append(duplicatePolygonsEast, duplicatePolygonsWest) # TODO: we still need to do something about cells that contain the poles return lonVertex, latVertex, duplicatePolygons def _compute_seed_mask(fcSeed, lon, lat, workers): """ Find the cell centers (points) closes to the given seed points and set the resulting mask to 1 there """ points = numpy.vstack((lon, lat)).T tree = KDTree(points) mask = numpy.zeros(len(lon), dtype=int) points = numpy.zeros((len(fcSeed.features), 2)) for index, feature in enumerate(fcSeed.features): points[index, :] = feature['geometry']['coordinates'] _, indices = tree.query(points, workers=workers) for index in indices: mask[index] = 1 return mask def _flood_fill_mask(mask, cellsOnCell): """ Flood fill starting with a mask of seed points """ maxNeighbors = cellsOnCell.shape[1] while True: neighbors = cellsOnCell[mask == 1, :] maskCount = 0 for iNeighbor in range(maxNeighbors): indices = neighbors[:, iNeighbor] # we only want to mask valid neighbors and locations that aren't # already masked indices = indices[indices >= 0] localMask = mask[indices] == 0 maskCount += numpy.count_nonzero(localMask) indices = indices[localMask] mask[indices] = 1 if maskCount == 0: break return mask def _compute_edge_sign(dsMesh, edgeMask, shape): """ Compute the edge sign along a transect """ edge_indices = numpy.flatnonzero(edgeMask) voe = dsMesh.verticesOnEdge.isel(nEdges=edge_indices).values - 1 lon = numpy.rad2deg(dsMesh.lonVertex.values[voe]) lon = numpy.mod(lon + 180., 360.) - 180. lat = numpy.rad2deg(dsMesh.latVertex.values[voe]) lonEdge = numpy.rad2deg(dsMesh.lonEdge.values[edge_indices]) lonEdge = numpy.mod(lonEdge + 180., 360.) - 180. lon, lat, duplicate_edges = \ _copy_dateline_lon_lat_vertices(lon, lat, lonEdge) nEdges = dsMesh.sizes['nEdges'] nVertices = dsMesh.sizes['nVertices'] # give periodic copies unique edge and vertex indices edge_indices = numpy.append(edge_indices, edge_indices[duplicate_edges] + nEdges) voe = numpy.append(voe, voe[duplicate_edges, :] + nVertices, axis=0) unique_vertices = numpy.unique(voe.ravel()) local_voe = numpy.zeros(voe.shape, dtype=int) distance = [] unique_lon = [] unique_lat = [] for local_v, v in enumerate(unique_vertices): local_mask = voe == v x = lon[local_mask][0] y = lat[local_mask][0] distance.append(shape.project(shapely.geometry.Point(x, y))) unique_lon.append(x) unique_lat.append(y) local_voe[local_mask] = local_v graph = Graph(n=len(unique_vertices), edges=zip(local_voe[:, 0], local_voe[:, 1])) graph.vs['distance'] = distance graph.vs['lon'] = unique_lon graph.vs['lat'] = unique_lat graph.vs['vertices'] = numpy.arange(len(unique_vertices)) graph.es['edges'] = edge_indices graph.es['vertices'] = [(v0, v1) for v0, v1 in zip(voe[:, 0], voe[:, 1])] edgeSign = numpy.zeros(edgeMask.shape, dtype=int) clusters = graph.connected_components() for cluster_index in range(len(clusters)): cluster = clusters.subgraph(cluster_index) distance = cluster.vs['distance'] if len(cluster.es) == 1: edges = cluster.es.select(0) edge = edges[0] if edge.source_vertex['distance'] < edge.target_vertex['distance']: sign = [1] else: sign = [-1] else: start = numpy.argmin(distance) end = numpy.argmax(distance) indices = \ cluster.get_shortest_paths(v=start, to=end, output='epath')[0] edges = cluster.es.select(indices) if len(edges) == 1: edge = edges[0] if edge.source_vertex['distance'] < \ edge.target_vertex['distance']: sign = [1] else: sign = [-1] else: verts = numpy.array(edges['vertices']) sign = numpy.zeros(len(indices), dtype=int) for index in range(len(indices)-1): if verts[index, 1] in verts[index+1, :]: sign[index] = 1 elif verts[index, 0] in verts[index+1, :]: sign[index] = -1 else: raise ValueError('could not find vertex ' '{}'.format(index)) if verts[-1, 0] in verts[-2, :]: sign[-1] = 1 elif verts[-1, 1] in verts[-2, :]: sign[-1] = -1 else: raise ValueError('could not find vertex -1') sign = numpy.array(sign) edge_indices = numpy.array(edges['edges']) valid = numpy.array(edge_indices) < nEdges edgeSign[edge_indices[valid]] = sign[valid] duplicate = numpy.logical_not(valid) edgeSign[edge_indices[duplicate] - nEdges] = sign[duplicate] return edgeSign