.. _landice_visualization: ************* Visualization ************* .. _landice_transects: Plotting Landice Transects ========================== .. image:: ../images/thwaites_transect.png :width: 500 px :align: center The function :py:func:`mpas_tools.landice.visualization.plot_transect()` can be used to plot transects of various cell-centered MALI variables. The above figure was plotted with the code: .. code-block:: python import matplotlib.pyplot as plt from netCDF4 import Dataset from mpas_tools.landice.visualization import plot_transect fig, ax = plt.subplots(2,1, figsize=(5,5), sharex=True) data_path = "ISMIP6/archive/expAE02/" file = "2200.nc" x = [-1589311.171,-1208886.353] y = [-473916.7182,-357411.6176] times = [0, 1, 2, 3, 4] plot_transect(data_path + file, "geometry", ax=ax[0], times=times, x=x, y=y) plot_transect(data_path + file, "surfaceSpeed", ax=ax[1], times=times, x=x, y=y) fig.savefig("thwaites_transect.png", dpi=400) This can also be used to produce transects of ice temperature, with one time level should be plotted per subplot: .. code-block:: python fig, axs = plt.subplots(2,2, figsize=(10,10), sharex=True, sharey=True) files = ["rst.2015-01-01.nc", "rst.2100-01-01.nc", "rst.2200-01-01.nc", "rst.2300-01-01.nc"] x = [-1589311.171,-1208886.353] y = [-473916.7182,-357411.6176] for ax, file in zip(axs.ravel(), files): plot_transect(data_path + file, "temperature", ax=ax, times=[0], x=x, y=y) ax.set_title(file[4:8]) fig.savefig("thwaites_temperature_transects.png", dpi=400) .. image:: ../images/thwaites_temperature_transects.png :width: 500 px :align: center Plotting Landice Maps ===================== .. image:: ../images/ais_map.png :width: 500 px :align: center The function :py:func:`mpas_tools.landice.visualization.plot_map()` can be used to plot maps of cell-centered MALI variables. The above figure was plotted using: .. code-block:: python from mpas_tools.landice.visualization import plot_map fig, ax = plt.subplots(1, 1, figsize=(10,8), layout='constrained') var_plot, cbar, gl_plot = plot_map(data_path + files[0], "bedTopography", ax=ax, time=0, plot_grounding_line=True) This can also be used to plot derived fields, such as thickness change from 2015 to 2300: .. code-block:: python data_2300 = Dataset(data_path + "output_state_2300.nc") data_2300.set_auto_mask(False) data_2015 = Dataset(data_path + "output_state_2015.nc") data_2015.set_auto_mask(False) thk_2300 = data_2300.variables["thickness"][:] thk_2015 = data_2015.variables["thickness"][:] fig, ax = plt.subplots(1, 1, figsize=(6,5), layout='constrained') thk_diff_plot, thk_diff_cbar, _ = plot_map( data_path + "output_state_2015.nc", variable=thk_2300-thk_2015, ax=ax, time=0, vmin=-1000, vmax=1000, plot_grounding_line=False, variable_name="Thickness change 2015 to 2300 (m)") ax.grid(linestyle='dashed') .. image:: ../images/ais_thickness_change_map.png :width: 500 px :align: center Plotting Landice Grounding Lines ================================ .. image:: ../images/ais_map_with_grounding_lines.png :width: 500 px :align: center The function :py:func:`mpas_tools.landice.visualization.plot_grounding_lines()` can be used to add grounding lines to maps as countours. .. code-block:: python from mpas_tools.landice.visualization import plot_grounding_lines fig, ax = plt.subplots(1, 1, figsize=(8,6), layout='constrained') plot_grounding_lines([data_path + "output_state_2015.nc", data_path + "output_state_2100.nc", data_path + "output_state_2200.nc", data_path + "output_state_2300.nc"], ax=ax, cmap="plasma", times=[0]) plot_map(data_path + files[0], "bedTopography", ax=ax, time=0)