
Requirements and Design

Implicit Vertical Mixing in the Ocean Core

MPAS Development Team

May 2, 2012

Contents

1 Summary 2

2 Requirements 3

2.1 Requirement: Pacanowski and Philander vertical mixing scheme 3
2.2 Requirement: operator splitting and implicit solve 3

3 Algorithmic Formulations 4

3.1 Design Solution: Pacanowski and Philander vertical mixing scheme 4
3.2 Design Solution: operator splitting and implicit solve 5

3.2.1 Inclusion of bottom drag in the momentum implicit solve 7
3.2.2 Inclusion of implicit terms in the surface forcing. 8

4 Design and Implementation 9

4.1 Implementation: Pacanowski and Philander vertical mixing scheme 9
4.2 Implementation: operator splitting and implicit solve 10

5 Testing 12

5.1 Testing and Validation: Pacanowski and Philander vertical mixing scheme 12
5.2 Testing and Validation: operator splitting and implicit solve 12

1

Chapter 1

Summary

Implicit vertical mixing is required in ocean models because vertical mixing between unstably
stratified layers occurs at timescales faster that other model processes. The timestep requirement
for explicit timestepping is usually set by the horizontal advective CFL condition. In order to
include realistic vertical mixing without very small time steps, we must use operator splitting so
that the vertical tracer diffusion term is treated with an implicit timestep, while the remaining
terms of the tracer equation use an explicit method. This is almost identical to the implementation
in POP (see Reference Manual p. 25), except that POP uses leapfrog for the explicit timestep,
while MPAS-Ocean uses fourth-order Runge-Kutta. A reasonable test of implicit vertical mixing is
simply vertical tracer diffusion with zero advection, which can be compared against one-dimensional
analytic solutions.

2

Chapter 2

Requirements

2.1 Requirement: Pacanowski and Philander vertical mixing scheme

Date last modified: 2011/02/28
Contributors: Mark Petersen

This simply computes the value of the vertical viscosity and tracer diffusivity based on the local
Richardson number, calculated from velocity and density fields.

2.2 Requirement: operator splitting and implicit solve

Date last modified: 2011/02/28
Contributors: Mark Petersen

The momentum vertical and tracer vertical diffusion terms must be solved implicitly. This will
normally be used in z-level mode, but coding should work in both z-level and isopycnal modes.

3

Chapter 3

Algorithmic Formulations

3.1 Design Solution: Pacanowski and Philander vertical mixing

scheme

Date last modified: 2011/02/28
Contributors: Mark Petersen

The formulation is identical to that presented in the POP reference manual, p. 49, except that
velocities must be averaged from from cell edges to cell centers, rather than cell corners to cell
edges, and in MPAS the column index loops within the cell index.

In this parameterization, the vertical diffusivity and viscosity are functions of the Richardson
Number,

Ri = N2

(

∂V

∂z

)−2

= − g

ρ0

∂ρ

∂z

(

∂V

∂z

)−2

, (3.1)

where V =
√

u2 + v2 =
√

ke is the velocity magnitude. The discrete version is

Ritop
k = − g

ρ0

ρ∗k−1
− ρ∗k

1

2
(hk−1 + hk)

(

uk−1 − uk
1

2
(hk−1 + hk)

)−2

(3.2)

= − g

ρ0

(ρ∗k−1
− ρ∗k)

1

2
(hk−1 + hk)

(uk−1 − uk)2 + ǫ
(3.3)

where top indicates a layer interface, ke is the cell-centered kinetic energy, ρ∗k is the density in layer
k adiabatically displaced to the surface, and ǫ is a small number to avoid dividing by zero. We will
use ρ0 = 1000m3/kg as in POP.

The variable Ritop must be available at cell edges for the viscoscity νv and at cell centers for
the tracer diffusion κv. In addition, the computation of shear is native to the edges, while density
is native to the cell centers. The design chapter lays out the steps to compute these variables.

The functional forms for vertical viscosity and diffusivity at each layer interface will be identical
to POP:

νv = νbkrd + Rich mix/(1 + 5Ri)2 (3.4)

κv = κbkrd + (νbkrd + Rich mix/(1 + 5Ri)2)/(1 + 5Ri) (3.5)

4

for Ri >= 0. For unstable stratification, Ri < 0 and the viscosity and diffusion are set to be very
high. For implicit vertical mixing, it is set by the config convective visc and config convective diff
input variables. For explicit vertical diffusion, it is based on the vertical diffusive CFL condition,

νv = κv =
1

4

dz2

dt
(3.6)

3.2 Design Solution: operator splitting and implicit solve

Date last modified: 2012/05/02
Contributors: Mark Petersen, Qingshan Chen

The continuous MPAS-Ocean tracer equation with operator splitting is

∂hϕ

∂t
+ ∇ · (hϕu) +

∂

∂z
(hϕw) = ∇ · (hκh∇ϕ) + (1 − λ)h

∂

∂z

(

κv
∂ϕ

∂z

)

+ λh
∂

∂z

(

κv
∂ϕ

∂z

)

, (3.7)

where λ = 1 for fully implicit vertical mixing. Consolidating all of the terms to be solved explicitly
and implicitly, we have

∂hϕ

∂t
= Fexp(t, h, φ) + Fimp(t, h, φ), (3.8)

Fimp(t, h, φ) = λh
∂

∂z

(

κv
∂ϕ

∂z

)

. (3.9)

We now choose Runge-Kutta 4 for the explicit timestep, and backward Euler for the implicit
timestep,

(hϕ)n+1 = (hϕ)n +
∆t

6
(k1 + 2k2 + 2k3 + k4) + ∆tλhn+1 ∂

∂z

(

κv
∂ϕn+1

∂z

)

, (3.10)

where k1 . . . k4 are the RK4 slopes. Because h and ϕ are separate in the last term, we must solve for
ϕn+1 rather than (hϕ)n+1 in the implicit solve. To deal with this, we define a provisional variable

(̃hϕ)
n+1

and separate the solve into two steps,

(̃hϕ)
n+1

= (hϕ)n +
∆t

6
(k1 + 2k2 + 2k3 + k4) (3.11)

ϕn+1 =
(̃hϕ)

n+1

hn+1
+ ∆tλ

∂

∂z

(

κv
∂ϕn+1

∂z

)

. (3.12)

Note that (̃hϕ)
n+1

is the solution from the explicit RK4 in the current code, and hn+1 is known
from the solution of the thickness equation. Rewrite 3.12 as

(

1 − ∆tλ
∂

∂z

(

κv
∂

∂z

))

ϕn+1 =
(̃hϕ)

n+1

hn+1
(3.13)

and add spacial discretization,

(1 − ∆tλδzκvδz)ϕn+1

k =
(̃hϕ)

n+1

k

hn+1

k

(3.14)

5

where δz is a first order finite difference δzϕk = (ϕk−1/2−ϕk+1/2)/hk (index k increases downward).
The second order derivative is then:

δzκδzϕk =
κtop

k (ϕk−1 − ϕk)

hn+1

k (hn+1

k−1
+ hn+1

k)/2
−

κtop
k+1

(ϕk − ϕk+1)

hn+1

k (hn+1

k + hn+1

k+1
)/2

(3.15)

so that (3.14) is then

ϕn+1

k − 2∆tλ

hn+1

k

[

κtop
k (ϕn+1

k−1
− ϕn+1

k)

hn+1

k−1
+ hn+1

k

−
κtop

k+1
(ϕn+1

k − ϕn+1

k+1
)

hn+1

k + hn+1

k+1

]

=
(̃hϕ)

n+1

k

hn+1

k

(3.16)

which can be rewritten as

Akϕ
n+1

k−1
+ Bkϕ

n+1

k + Ckϕ
n+1

k+1
=

(̃hϕ)
n+1

hn+1
, k = 1 . . . N (3.17)

Ak = − 2∆tλκtop
k

hn+1

k (hn+1

k−1
+ hn+1

k)
, k = 2 . . . N (3.18)

Ck = −
2∆tλκtop

k+1

hn+1

k (hn+1

k + hn+1

k+1
)
, k = 1 . . . N − 1 (3.19)

A1 = CN = 0, (3.20)

Bk = 1 − Ak − Ck (3.21)

where κtop
k+1

is the tracer diffusion on the interface between layers k and k + 1, and the bottom cell
is N . This equation set is nearly identical to that in the POP reference manual, section 4.2.3. The
boundary condition for the implicit tracer solve is no flux,

∂ϕ

∂z
= 0 (3.22)

at the top of cell 1 and the bottom of cell N (top of cell N + 1). When this is implemented in the
derivation from (3.17) to (3.22), the result is A1 = CN = 0 above.

We now proceed to operator splitting for the momentum equation. The continuous equation is

∂u

∂t
+ q(hu⊥) + w

∂u

∂z
= − 1

ρ0

∇p −∇K + νh(∇δ + k×∇η)

+(1 − λ)
∂

∂z

(

νv
∂u

∂z

)

+ λ
∂

∂z

(

νv
∂u

∂z

)

. (3.23)

Continuing as in (3.8-3.10), we define a provisional variable ũn+1 and separate the solve into two
steps,

ũn+1 = un +
∆t

6
(k1 + 2k2 + 2k3 + k4) (3.24)

un+1 = ũn+1 + ∆tλ
∂

∂z

(

νv
∂un+1

∂z

)

. (3.25)

6

Note that ũn+1 is the solution from the explicit RK4 in the current code. Rewrite (3.25) as

(

1 − ∆tλ
∂

∂z

(

νv
∂

∂z

))

un+1 = ũn+1 (3.26)

and add spacial discretization,

(1 − ∆tλδzνvδz)un+1

k = ũn+1

k (3.27)

where δz is a first order finite difference. The tridiagonal solve is then

Aku
n+1

k−1
+ Bku

n+1

k + Cku
n+1

k+1
= ũn+1

k , k = 1 . . . N (3.28)

Ak = − 2∆tλνtop
k

hn+1

k (hn+1

k−1
+ hn+1

k)
, k = 2 . . . N (3.29)

Ck = −
2∆tλνtop

k+1

hn+1

k (hn+1

k + hn+1

k+1
)
, k = 1 . . . N − 1 (3.30)

A1 = CN = 0, (3.31)

Bk = 1 − Ak − Ck (3.32)

Again, no flux boundary conditions ∂u/∂z = 0 imply that A0 = CN = 0. In practice λ, the fraction
vertical mixing done implicitly, is either one (fully implicit) or zero (fully explicit) so that variable
does not show up in the code. Rather, there is a logical flag config_implicit_vertical_mix that
serves that purpose.

3.2.1 Inclusion of bottom drag in the momentum implicit solve

Date last modified: 2012/05/02
Contributors: Mark Petersen, Mathew Maltrud, Qingshan Chen

The bottom boundary condition for the viscous term is

νv
∂u

∂z
→ cdrag|u|u. (3.33)

where cdrag is the dimensionless drag coefficient of the order 10−3. Note that this is nonlinear in
u, so we linearize by considering the speed |u| to be at time level n and the velocity to at be time
level n + 1:

νv
∂un+1

∂z
→ cdrag|un|un+1. (3.34)

Applying the bottom boundary condition to (3.26) at level N, and discritizing the outside derivative
first,

un+1

k − ∆t

[

(

νv
∂u
∂z

)k−1/2 −
(

νv
∂u
∂z

)k+1/2

hn+1

k

]

= ũn+1

k (3.35)

7

Level N + 1/2 is the bottom boundary, and can be replaced with the drag term,

un+1

k − ∆t





(

νv

hn+1

k

∂u

∂z

)k−1/2

− cdrag|un|un+1

hn+1

k



 = ũn+1

k , k = N (3.36)

Discretizing the remaining derivative,

un+1

k − ∆t

[

νtop
k (un+1

k−1
− un+1

k)

hn+1

k (hn+1

k−1
+ hn+1

k)/2
− cdrag|un|un+1

hn+1

k

]

= ũn+1

k , k = N (3.37)

so that the coefficients of the tridiagonal solve are revised as:

Aku
n+1

k−1
+ Bku

n+1

k + Cku
n+1

k+1
= ũn+1

k , k = 1 . . . N (3.38)

Ak = − 2∆tλνtop
k

hn+1

k (hn+1

k−1
+ hn+1

k)
, k = 2 . . . N (3.39)

Ck = −
2∆tλνtop

k+1

hn+1

k (hn+1

k + hn+1

k+1
)
, k = 1 . . . N − 1 (3.40)

A1 = CN = 0, (3.41)

Bk = 1 − Ak − Ck, k = 1 . . . N − 1 (3.42)

Bk = 1 − Ak + ∆tcdrag|un|/hn+1

k , k = N (3.43)

3.2.2 Inclusion of implicit terms in the surface forcing.

Date last modified: 2011/05/20
Contributors: Mark Petersen, Mathew Maltrud

Surface forcing terms often take on a similar form as the drag term in the previous section. For
example, simple restoring of surface temperature takes the following form,

R = (Tref − T)/τ, (3.44)

where Tref is a reference temperature, and τ is a restoring timescale. Clearly, this linear form
can easily be incorporated into the tridiagonal implicit solve. However, POP does not have this
feature. Also, complications may occur when running fully coupled. We therefore defer this aspect
of the problem to the future.

8

Chapter 4

Design and Implementation

4.1 Implementation: Pacanowski and Philander vertical mixing

scheme

Date last modified: 2011/02/28
Contributors: Mark Petersen

Add the “rich” option to config_vert_visc_type. Add separate namelist for each vertical
mixing type, so the vmix namelist is less confusing. That part of the Registry will look like:

namelist character vmix config_vert_visc_type const

namelist character vmix config_vert_diff_type const

namelist logical vmix config_implicit_vertical_mix .true.

namelist real vmix config_convective_visc 1.0

namelist real vmix config_convective_diff 1.0

namelist real vmix_const config_vert_visc 2.5e-4

namelist real vmix_const config_vert_diff 2.5e-5

namelist real vmix_rich config_bkrd_vert_visc 1.0e-4

namelist real vmix_rich config_bkrd_vert_diff 1.0e-5

namelist real vmix_rich config_rich_mix 50

namelist real vmix_tanh config_max_visc_tanh 2.5e-1

namelist real vmix_tanh config_min_visc_tanh 1.0e-4

namelist real vmix_tanh config_max_diff_tanh 2.5e-2

namelist real vmix_tanh config_min_diff_tanh 1.0e-5

namelist real vmix_tanh config_zMid_tanh -100

namelist real vmix_tanh config_zWidth_tanh 100

Right now, the vertical viscosity variable vertViscTop(k) is computed columnwise in subrou-
tine compute_tend, and the vertical diffusivity variable vertDiffTop(k) is computed columnwise
in subroutine compute_scalar_tend. We propose to change these to 3D variables computed in
compute_solve_diagnostics. The revised registry would include:

var persistent real RiTopOfCell (nVertLevelsP1 nCells Time) 1 o diagnostics

var persistent real RiTopOfEdge (nVertLevelsP1 nEdges Time) 1 o diagnostics

9

var persistent real vertViscTopOfEdge (nVertLevelsP1 nEdges Time) 1 o diagnostics

var persistent real vertDiffTopOfCell (nVertLevelsP1 nCells Time) 1 o diagnostics

var persistent real rhoDisplaced (nVertLevels nCells Time) 2 o state

A note will be added that in the future, arrays could be saved by computing these values columnwise
on the fly. We feel that the full 3D allocation allows for clear and consolidated code, so is worthwhile
in the prototype version. A new variable class, named diagnostics, with only one time level is used
for these variables, in order to avoid the memory required for two time-level state class variables.

Right now subroutine equation_of_state_jm computes the density for all cells and levels. It
will need to be modified to compute ρ∗ values, density of a parcel after adiabatic displacement.

The following steps will be used to ensure that variables are computed at the correct locations:

1. compute density of parcel displaced to surface, ρ∗

2. drhoTopOfCell(k) = ρ∗k−1
− ρ∗k

3. interpolate drhoTopOfCell to drhoTopOfEdge

4. duTopOfEdge(k) = uk−1 − uk

5. interpolate duTopOfEdge to duTopOfCell

6. compute RiTopOfCell using drhoTopOfCell and duTopOfCell

7. compute vertDiffTopOfCell from RiTopOfCell

8. compute RiTopOfEdge using drhoTopOfEdge and duTopOfEdge

9. compute vertViscTopOfEdge from RiTopOfEdge

4.2 Implementation: operator splitting and implicit solve

Date last modified: 2011/02/28
Contributors: Mark Petersen

Add the following namelist option to the registry:

namelist logical vmix config_implicit_vertical_mix .true.

so that .true. sets λ = 1 in 3.7. In the code the variable λ will not appear. Rather, the namelist
variable config_implicit_vertical_mix would be used in if statements around the tridiagonal
solve and the explicit vertical tracer diffusion term.

We will add eqn (3.14) and (3.27) to subroutine rk4, here within if (config_implicit_vertical_mix)

! END RK loop

block => domain % blocklist

do while (associated(block))

10

if (config_implicit_vertical_mix) then

call compute_vertical_mix_coeff(dt, state, mesh, diag)

do iCell=1,nCells

N=maxLevelCell(iCell)

do k=1,N

! Compute A(k), C(k), R(k) for momentum

enddo

call tridiagonal_solve(u(:,iCell),A(2:N),C(1:N),A(1:N-1),R)

do k=1,N

! Compute A(k), C(k), R(iTracer,k) for tracers

enddo

call tridiagonal_solve_mult(tracers(:,:,iCell),A(2:N),C(1:N),A(1:N-1),R)

end do

else

do iCell=1,nCells

do k=1,maxLevelCell

tracers(:,k,iCell) = tracers(:,k,iCell) / h(k,iCell)

end do

end do

endif

call compute_solve_diagnostics(dt, state, mesh)

call reconstruct(state, mesh)

block => block % next

end do

The variables ρ∗, Ri, νv, and κv are computed in the new subroutine compute_vertical_mix_coeff
rather than compute_solve_diagnostics in order to save computation. For implicit vertical mix-
ing (λ = 1) one only needs νv and κv after the fourth RK stage.

We propose to use a standard tridiagonal solver for tridiagonal_solve. An additional sub-
routine tridiagonal_solve_mult, will include an internal loop over tracers to save computation.
I think we should add both of these to the operator subdirectory. The POP tridiag solver, in
impvmixt in module vertical_mix.F90, should not be copied, because it has horizontal indices as
the innermost loop, includes partial bottom cells, and so is not general in its interface.

11

Chapter 5

Testing

5.1 Testing and Validation: Pacanowski and Philander vertical

mixing scheme

Date last modified: 2011/02/28
Contributors: Mark Petersen

For an artificial initial condition with velocities and densities that are linear with depth, one
can compute the expected values for Ri, vertical viscosity, and vertical diffusion, and make sure
the model matches this. This would require a linear equation of state to predict ρ∗.

The equation of state routine with adiablatic displacement should be tested by itself.

5.2 Testing and Validation: operator splitting and implicit solve

Date last modified: 2011/02/28
Contributors: Mark Petersen

The tridiagonal solver subroutine may be tested with a stand-alone matrix and be compared
with a solution from Matlab.

A reasonable test of implicit vertical mixing is simply vertical tracer diffusion with zero advec-
tion, which can be compared against one-dimensional analytic solutions.

In the end, a full global ocean simulation with topography should be run, and implicit vertical
mixing should produce reasonable results.

12

