2024 |
Ha, S., J.-J. Guerrette, I. Hernández Baños, W. C. Skamarock, and M. G. Duda, 2024: Incremental Analysis Update (IAU) in the Model for Prediction Across Scales coupled with the Joint Effort for Data assimilation Integration (MPAS-JEDI 2.0.0). Geosci. Model Dev. 17, 10, 4199-4211, https://doi.org/10.5194/gmd-17-4199-2024. |
2022 |
Núñez Ocasio, K. M., and Rios-Berrios, R. (2023). African easterly wave evolution and tropical cyclogenesis in a pre-Helene (2006) hindcast using the Model for Prediction Across Scales-Atmosphere (MPAS-A). Journal of Advances in Modeling Earth Systems, 15, e2022MS003181. https://doi.org/10.1029/2022MS003181 |
2021 |
Gilliam, R. C., J. A. Herwehe, O. R. Bullock Jr, J. E. Pleim, L. Ran, P. C. Campbell, and H. Foroutan, 2021: Establishing the suitability of the Model for Prediction Across Scales for global retrospective air quality modeling. Journal of Geophysical Research: Atmospheres, 126, e2020JD033588. https://doi.org/10.1029/2020JD033588 |
Tian, X. and X. Zou, 2021: Validation of a Prototype Global 4D-Var Data Assimilation System for the MPAS-Atmosphere Model, Mon. Wea. Rev., 149(8), 2803-2817. |
Tian, X. and K. Ide, 2021: Hurricane Predictability Analysis with Singular Vectors of the Multiresolution Global Shallow Water Model, J. Atmos. Sci., 78(4), 1259-1273. |
Imberger, M., Larsén, X.G. & Davis, N. Investigation of Spatial and Temporal Wind-Speed Variability During Open Cellular Convection with the Model for Prediction Across Scales in Comparison with Measurements. Boundary-Layer Meteorology (2021). https://doi.org/10.1007/s10546-020-00591-0 (pdf) |
2020 |
Tian, X., 2020: Evolutions of Errors in the Global Multiresolution Model for Prediction Across Scales - Shallow Water (MPAS-SW), Q. J. Royal Meteorol. Soc., 147, 382-391. |
Tian, X. and X. Zou, 2020: Development of the Tangent Linear and Adjoint Models of the MPAS-Atmosphere Dynamic Core and Applications in Adjoint Relative Sensitivity Studies. Tellus A, 71(1), 1-17. |
Rios‐Berrios, R., Medeiros, B., & Bryan, G. H. (2020). Mean climate and tropical rainfall variability in aquaplanet simulations using the Model for Prediction Across Scales‐Atmosphere. Journal of Advances in Modeling Earth Systems, 12, e2020MS002102. https://doi.org/10.1029/2020MS002102 (pdf) |
Fowler, L.D., M.C. Barth, and K. Alapaty, 2020: Impact of scale-aware deep convection on the cloud liquid and ice water paths and precipitation using the Model for Prediction Across Scales (MPASv-5.2). Geosci. Model Dev., 13, 2851-2877, https://doi.org/10.5194/gmd-13-2851-2020. (pdf) |
Hsu, L., L. Tseng, S. Hou, B. Chen, and C. Sui, 2020: A Simulation Study of Kelvin Waves Interacting with Synoptic Events during December 2016 in the South China Sea and Maritime Continent. J. Climate, 33, 6345–6359, https://doi.org/10.1175/JCLI-D-20-0121.1. (pdf) |
2019 |
Judt, F., 2019: Atmospheric Predictability of the Tropics, Middle Latitudes, and Polar Regions Explored through Global Storm-Resolving Simulations. JAS, 77, 257-276. doi: 10.1175/JAS-D-19-0116.1 (pdf) |
Michaelis, A. C., G. M. Lackmann, and W. A. Robinson, 2019: Evaluation of a unique approach to high-resolution climate modeling using the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 5.1. Geosci. Model Dev., 12, 3725-3743. doi: 10.5194/gmd-12-3725-2019 (pdf) |
Schwartz, C. S., 2019: Medium-Range Convection-Allowing Ensemble Forecasts with a Variable-Resolution Global Model. Mon. Wea. Rev., 147, 2997-3023. doi: 10.1175/MWR-D-18-0452.1 (pdf) |
Skamarock, W. C., C. Snyder, J. B. Klemp, and S-H. Park, 2019: Vertical Resolution Requirements in Atmospheric Simulations. Mon. Wea. Rev., 147, 2641-2656. doi: 10.1175/MWR-D-19-0043.1 (pdf) |
Zhao, C., M. Xu, Y. Wang, M. Zhang, J. Guo, Z. Hu, L. R. Leung, M. Duda, and W. Skamarock, 2019: Modeling extreme precipitation over East China with a global variable-resolution modeling framework (MPASv5.2): impacts of resolution and physics. Geosci. Model Dev., 12, 2707-2726. doi: 10.5194/gmd-12-2707-2019 (pdf) |
2018 |
Bullock Jr., O. R., Foroutan, H., Gilliam, R. C., and Herwehe, J. A., 2018: Adding four-dimensional data assimilation by analysis nudging to the Model for Prediction Across Scales – Atmosphere (version 4.0), Geosci. Model Dev., 11, 2897–2922, https://doi.org/10.5194/gmd-11-2897-2018. (pdf) |
Skamarock, W. C., M. G. Duda, S. Ha, and S-H. Park, 2018: Limited-Area Atmospheric Modeling Using an Unstructured Mesh. Mon. Wea. Rev., 146, 3445-3460. doi: 10.1175/MWR-D-18-0155.1 (pdf) |
Judt, F., 2018: Insights into Atmospheric Predictability through Global Convection-Permitting Model Simulations. JAS, 75, 1477-1497. doi: 10.1175/JAS-D-17-0343.1 (pdf) |
2017 |
Ha, S., C. Snyder, W. C. Skamarock, J. Anderson, and N. Collins, 2017: Ensemble Kalman Filter Data Assimilation for the Model for Prediction Across Scales (MPAS). Mon. Wea. Rev., 145, 4673-4692. doi: 10.1175/MWR-D-17-0145.1 (pdf) |
Huang, C.-Y., Z. You, W. C. Skamarock, and L.-H. Hsu, 2017: Influences of Large-scale Flow Variations on the Track Evolution of Typhoons Morakot (2009) and Megi (2010): Simulations with a Global Variable-Resolution Model. Mon. Wea. Rev., 145, 1691-1716. doi:10.1175/MWR-D-16-0363.1 (pdf) |
Ringler, T. D., Saenz, J.A., Wolfram, P.J., and Van Roekel, L., 2017: A Thickness-Weighted Average Perspective of Force Balance in an Idealized Circumpolar Current J. Phys. Oceanogr., 47(2), 285-302. doi:10.1175/JPO-D-16-0096.1 (pdf) |
Wolfram, P. J. and Ringler, T. D., 2017: Quantifying Residual, Eddy, and Mean Flow Effects on Mixing in an Idealized Circumpolar Current J. Phys. Oceanogr., 47(8), 1897-1920. doi:10.1175/JPO-D-16-0101.1 (pdf) |
2016 |
Davis, C. A., D. A. Ahijevych, W. Wang, and W. C. Skamarock, 2016: Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models. Monthly Weather Review, 144, 4141-4160, doi:10.1175/MWR-D-16-0021.1. (pdf) |
Wong, M. and W. C. Skamarock, 2016: Spectral characteristics of convective-scale precipitation observations and forecasts, Mon. Wea. Rev., 144, 4183-4196, doi:10.1175/MWR-D-16-0183.1 (pdf) |
Zhao, C., L. R. Leung, S.-H. Park, S. Hagos, J. Lu, K. Sakaguchi, J. Yoon, B. E. Harrop, W. Skamarock, and M. G. Duda, 2016: Exploring the impacts of physics and resolution on aqua-planet simulations from a nonhydrostatic global variable-resolution modeling framework. JAMES, 8 (4), 1751-1768. doi:10.1002/2016MS000727 (pdf) |
Pilon, R., C. Zhang, and J. Dudhia, 2016: Roles of deep and shallow convection and microphysics in the MJO simulated by the Model for Prediction Across Scales, J. Geophys. Res. Atmos., 121, 10,575–10,600, doi:10.1002/2015JD024697. (pdf) |
Fowler, L. D., W. C. Skamarock, G. A. Grell, S. R. Freitas, and M. G. Duda, 2016: Analyzing the Grell–Freitas Convection Scheme from Hydrostatic to Nonhydrostatic Scales within a Global Model. Mon. Wea. Rev., 144, 2285–2306. doi:10.1175/MWR-D-15-0311.1 (pdf) |
Heinzeller, D., M.G. Duda, and H. Kunstmann, 2016: Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment. Geosci. Model Dev., 9, 77-110, 2016, doi:10.5194/gmd-9-77-2016 (pdf) |
2015 |
Klemp, J. B., W. C. Skamarock, and S.-H. Park (2015), Idealized global nonhydrostatic atmospheric test cases on a reduced-radius sphere, J. Adv. Model. Earth Syst., 7, 1155–1177, doi:10.1002/2015MS000435. (pdf) |
Martini, M. N., W. I. Gustafson Jr., T. O'Brien, and P.-L. Ma (2015), Evaluation of tropical channel refinement using MPAS-A aquaplanet simulations, J. Adv. Model. Earth Syst., 7, 1351–1367, doi:10.1002/2015MS000470 (pdf) |
Sandbach, S., J. Thuburn, D. Vassilev, and M. G. Duda, 2015: A Semi-Implicit Version of the MPAS-Atmosphere Dynamical Core. Mon. Wea. Rev., 143, 3838–3855. doi:10.1175/MWR-D-15-0059.1 (pdf) |
Sakaguchi, K., L. R. Leung, C. Zhao, Q. Yang, J. Lu, S. Hagos, S. A. Rauscher, L. Dong, T. D. Ringler, and P. H. Lauritzen, 2015: Exploring a Multiresolution Approach Using AMIP Simulations. J. Climate, 28, 5549-5574. doi:10.1175/JCLI-D-14-00729.1 (pdf) |
Hagos, S., L. R. Leung, Q. Yang, C. Zhao, and J. Lu, 2015: Resolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations. J. Climate, 28, 2764-2776. doi:10.1175/JCLI-D-14-00567.1 (pdf) |
Wolfram, P. J., Ringler, T. D., Maltrud, M. E., Jacobsen, D. W., Petersen, M. R., 2015: Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). J. Phys. Oceanogr., 45(8), 2114-2133. doi:10.1175/JPO-D-14-0260.1 (pdf) |
2014 |
Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014, J. Atmos. Sci., 71(11), 4369-4381. doi:10.1175/JAS-D-14-0114.1 (pdf) |
A Comparison of Mesh Refinement in the Global MPAS-A and WRF Models Using an Idealized Normal-Mode Baroclinic Wave Simulation. Park, S.-H., J. B. Klemp and W. C. Skamarock, 2014, Mon. Wea. Rev., 142, 3614-3634. doi:10.1175/MWR-D-14-00004.1 (pdf) |
Impact of Variable-Resolution Meshes on Midlatitude Baroclinic Eddies Using CAM-MPAS-A. Rauscher, S. A., & Ringler, T. D., 2014, Monthly Weather Review, 142(11), 4256–4268. doi:10.1175/MWR-D-13-00366.1 (pdf) |
Visualizing Large 3D Geodesic Grid Data with Massively Distributed GPUs. J. Xie, H, Yoy, K. Ma. IEEE Symposium on Large Data Analysis and Visualization 2014 October 9–10, Paris, France |
The Dependence of ITCZ Structure on Model Resolution and Dynamical Core in Aquaplanet Simulations. Landu, K., Leung, L. R., Hagos, S., Vinoj, V., Rauscher, S. A., Ringler, T., & Taylor, M., 2014, Journal of Climate, 27(6), 2375–2385. doi:10.1175/JCLI-D-13-00269.1 (pdf) |
Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations. Yang, Q., Leung, L. R., Rauscher, S. A., Ringler, T. D., & Taylor, M. A., 2014, Journal of Climate, 27(10), 3565–3581. doi:10.1175/JCLI-D-13-00468.1 (pdf) |
2013 |
Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. S.-H. Park, W. Skamarock, J. Klemp, L. Fowler, and M. Duda, 2013, Mon. Wea. Rev., 141, 3116-13129, doi:10.1175/MWR-D-12-00096.1 pdf |
A Multi-Resolution Approach to Global Ocean Modeling. Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. (2013). Ocean Modelling. Ocean Modelling, 69(C), 211–232. doi:10.1016/j.ocemod.2013.04.010 (pdf) |
Jacobsen, D. W., Gunzburger, M., Burkardt, J., & Peterson, J. (2013). Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations. Geoscientific Model Development Discussions, 6(1), 1427–1466. doi:10.5194/gmdd-6-1427-2013 (pdf) |
Unified Matching Grids for Multidomain Multiphysics Simulations. Womeldorff, G., Peterson, J., Gunzburger, M., & Ringler, T. (2013), SIAM Journal on Scientific Computing, 35(6), A2781–A2806. doi:10.1137/130906611 (pdf) |
A hierarchical evaluation of regional climate simulations. L Ruby Leung, Todd Ringler, William D Collins, Mark Taylor, Moetasim Ashfaq, Eos, Transactions American Geophysical Union, 94 (34) (pdf)
|
Error Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF. Hagos, S., Leung, R., Rauscher, S. A., & Ringler, T., 2013, 141(9), 3022–3036. doi:10.1175/MWR-D-12-00338.1 (pdf) |
2012 |
Exploring a Global Multi-Resolution Modeling Approach Using Aquaplanet Simulations. S. Rauscher, T. Ringler, W. Skamarock, and A. Mirin, 2012, J. Climate., 26, 2432-2452, doi:10.1175/JCLI-D-12- 00154.1 pdf |
A Multi-scale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering. William C. Skamarock, Joseph B. Klemp, Michael G. Duda, Laura Fowler, Sang-Hun Park, and Todd D. Ringler. 2012 Monthly Weather Review, 240, 3090-3105, doi:10.1175/MWR-D-11-00215.1 pdf |
2011 |
A Terrain-Following Coordinate with Smoothed Coordinate Surfaces. Joseph B. Klemp, 2011, Monthly Weather Review, 139(7), 2163–2169. doi:10.1175/MWR-D-10-05046.1 |
Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration. W. Skamarock and A. Gassmann, 2011, Monthly Weather Review, Vol. 139, pp. 2962-2975, doi:10.1175/MWR-D-10-05056.1 pdf |
Exploring a Multi-Resolution Modeling Approach within the Shallow-Water Equations. Ringler, T., D.W. Jacobsen, M. Gunzburger, L. Ju, M. Duda and W. Skamarock, 2011, Monthly Weather Review, DOI: 10.1175/MWR-D-10-05049.1 |
2010 |
Ringler, T., J. Thuburn, J. Klemp and W. Skamarock, 2010: A unified approach to energy conservation and potential vorticity dynamics on arbitrarily structured C-grids, Journal of Computational Physics, published online, doi:10.1016/j.jcp.2009.12.007 |
Ju, L., T. Ringler and M. Gunzburber, 2010, Voronoi Diagrams and Application in Climate and Global Modeling, Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science, draft. pdf |
2009 |
Thuburn, J., T. Ringler, J. Klemp and W. Skamarock, 2009: Numerical representation of geostrophic modes on arbitrarily structured C-grids, Journal of Computational Physics, 2009: 228 (22), 8321-8335. doi:10.1016/j.jcp.2009.08.006 |
2008 |
Ringler, T., L. Ju and M. Gunzburger, 2008, A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations, Ocean Dynamics, 58 (5-6), 475-498. doi:10.1007/s10236-008-0157-2 |
2003 |
Du, Q., M. Gunzburger and L. Ju, 2003, Constrained centroidal Voronoi tessellations for surfaces, SIAM Journal on Scientific Computing, 24, 1488-1506. doi:10.1137/S1064827501391576 |
Du, Q., M. Gunzburger, L. Ju, 2003, Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere, Computer Methods in Applied Mechanics and Engineering, 2003, 192, 3933-3957. doi:10.1016/S0045-7825(03)00394-3 |
2002 |
Ju, L., Q. Du and M. Gunzburger, 2002, Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations, Parallel Computing, 28, 1477-1500. doi:10.1016/S0167-8191(02)00151-5 |
1999 |
Du, Q., V. Faber and M. Gunzburger, 1999, Centroidal Voronoi tessellations: Applications and algorithms, SIAM Review, 41, 637-676. doi:10.1137/S0036144599352836 |
Please send MPAS-relevant references and http addresses to ringler@lanl.gov and/or skamaroc@ucar.edu.