# This software is open source software available under the BSD-3 license.
#
# Copyright (c) 2020 Triad National Security, LLC. All rights reserved.
# Copyright (c) 2020 Lawrence Livermore National Security, LLC. All rights
# reserved.
# Copyright (c) 2020 UT-Battelle, LLC. All rights reserved.
#
# Additional copyright and license information can be found in the LICENSE file
# distributed with this code, or at
# https://raw.githubusercontent.com/MPAS-Dev/MPAS-Analysis/master/LICENSE
from __future__ import absolute_import, division, print_function, \
unicode_literals
import xarray as xr
from pyremap import LatLonGridDescriptor
from mpas_analysis.shared import AnalysisTask
from mpas_analysis.shared.io.utility import build_obs_path
from mpas_analysis.shared.climatology import RemapMpasClimatologySubtask, \
RemapObservedClimatologySubtask
from mpas_analysis.ocean.plot_climatology_map_subtask import \
PlotClimatologyMapSubtask
[docs]class ClimatologyMapEKE(AnalysisTask): # {{{
"""
An analysis task for comparison of eddy kinetic energy (eke) against
observations
"""
# Authors
# -------
# Kevin Rosa
[docs] def __init__(self, config, mpasClimatologyTask,
controlConfig=None): # {{{
"""
Construct the analysis task.
Parameters
----------
config : ``MpasAnalysisConfigParser``
Configuration options
mpasClimatologyTask : ``MpasClimatologyTask``
The task that produced the climatology to be remapped and plotted
controlConfig : ``MpasAnalysisConfigParser``, optional
Configuration options for a control run (if any)
"""
# Authors
# -------
# Xylar Asay-Davis, Kevin Rosa
fieldName = 'eke'
# call the constructor from the base class (AnalysisTask)
super(ClimatologyMapEKE, self).__init__(
config=config, taskName='climatologyMapEKE',
componentName='ocean',
tags=['climatology', 'horizontalMap', fieldName, 'publicObs'])
mpasFieldName = 'eke'
iselValues = {'nVertLevels': 0}
sectionName = self.taskName
# read in what seasons we want to plot
seasons = config.getExpression(sectionName, 'seasons')
# EKE observations are annual climatology so only accept annual
# climatology **should move this to setup_and_check()
if seasons != ['ANN']:
raise ValueError('config section {} does not contain valid list '
'of seasons. For EKE, may only request annual '
'climatology'.format(sectionName))
comparisonGridNames = config.getExpression(sectionName,
'comparisonGrids')
if len(comparisonGridNames) == 0:
raise ValueError('config section {} does not contain valid list '
'of comparison grids'.format(sectionName))
# the variables in variableList will be added to mpasClimatologyTask
# along with the seasons.
variableList = ['timeMonthly_avg_velocityZonal',
'timeMonthly_avg_velocityMeridional',
'timeMonthly_avg_velocityZonalSquared',
'timeMonthly_avg_velocityMeridionalSquared']
remapClimatologySubtask = RemapMpasEKEClimatology(
mpasClimatologyTask=mpasClimatologyTask,
parentTask=self,
climatologyName=fieldName,
variableList=variableList,
comparisonGridNames=comparisonGridNames,
seasons=seasons,
iselValues=iselValues)
# to compare to observations:
if controlConfig is None:
refTitleLabel = \
'Observations (Surface EKE from Drifter Data)'
observationsDirectory = build_obs_path(
config, 'ocean', '{}Subdirectory'.format(fieldName))
obsFileName = \
"{}/drifter_variance_20180804.nc".format(
observationsDirectory)
refFieldName = 'eke'
outFileLabel = 'ekeDRIFTER'
galleryName = 'Observations: EKE from Drifters'
remapObservationsSubtask = RemapObservedEKEClimatology(
parentTask=self, seasons=seasons, fileName=obsFileName,
outFilePrefix=refFieldName,
comparisonGridNames=comparisonGridNames)
self.add_subtask(remapObservationsSubtask)
diffTitleLabel = 'Model - Observations'
# compare with previous run:
else:
remapObservationsSubtask = None
controlRunName = controlConfig.get('runs', 'mainRunName')
galleryName = None
refTitleLabel = 'Control: {}'.format(controlRunName)
refFieldName = mpasFieldName
outFileLabel = 'eke'
diffTitleLabel = 'Main - Control'
for comparisonGridName in comparisonGridNames:
for season in seasons:
# make a new subtask for this season and comparison grid
subtask = PlotClimatologyMapSubtask(
self, season, comparisonGridName, remapClimatologySubtask,
remapObservationsSubtask, controlConfig=controlConfig)
subtask.set_plot_info(
outFileLabel=outFileLabel,
fieldNameInTitle='EKE',
mpasFieldName=mpasFieldName,
refFieldName=refFieldName,
refTitleLabel=refTitleLabel,
diffTitleLabel=diffTitleLabel,
unitsLabel=r'cm$^2$/s$^2$',
imageCaption='Mean Surface Eddy Kinetic Energy',
galleryGroup='Eddy Kinetic Energy',
groupSubtitle=None,
groupLink='eke',
galleryName=galleryName)
self.add_subtask(subtask)
# }}}
# }}}
# adds to the functionality of RemapDepthSlicesSubtask
class RemapMpasEKEClimatology(RemapMpasClimatologySubtask): # {{{
"""
A subtask for computing climatologies of eddy kinetic energy from means of
velocity and velocity-squared.
"""
# Authors
# -------
# Kevin Rosa
def customize_masked_climatology(self, climatology, season): # {{{
"""
Construct velocity magnitude as part of the climatology
Parameters
----------
climatology : ``xarray.Dataset`` object
the climatology data set
season : str
The name of the season to be masked
Returns
-------
climatology : ``xarray.Dataset`` object
the modified climatology data set
"""
# Authors
# -------
# Xylar Asay-Davis
# first, call the base class's version of this function so we extract
# the desired slices.
climatology = super(RemapMpasEKEClimatology,
self).customize_masked_climatology(climatology,
season)
# calculate mpas eddy kinetic energy
scaleFactor = 100 * 100 # m2/s2 to cm2/s2
eke = 0.5 * scaleFactor * \
(climatology.timeMonthly_avg_velocityZonalSquared -
climatology.timeMonthly_avg_velocityZonal ** 2 +
climatology.timeMonthly_avg_velocityMeridionalSquared -
climatology.timeMonthly_avg_velocityMeridional ** 2)
# drop unnecessary fields before re-mapping
climatology.drop_vars(['timeMonthly_avg_velocityZonal',
'timeMonthly_avg_velocityMeridional',
'timeMonthly_avg_velocityZonalSquared',
'timeMonthly_avg_velocityMeridionalSquared'])
# this creates a new variable eke in climatology (like netcdf)
climatology['eke'] = eke
climatology.eke.attrs['units'] = 'cm$^[2]$ s$^{-2}$'
climatology.eke.attrs['description'] = 'eddy kinetic energy'
return climatology # }}}
# }}}
class RemapObservedEKEClimatology(RemapObservedClimatologySubtask): # {{{
"""
A subtask for reading and remapping EKE observations
"""
# Authors
# -------
# Kevin Rosa
def get_observation_descriptor(self, fileName): # {{{
'''
get a MeshDescriptor for the observation grid
Parameters
----------
fileName : str
observation file name describing the source grid
Returns
-------
obsDescriptor : ``MeshDescriptor``
The descriptor for the observation grid
'''
# Authors
# -------
# Kevin Rosa
# create a descriptor of the observation grid using the lat/lon
# coordinates
obsDescriptor = LatLonGridDescriptor.read(fileName=fileName,
latVarName='Lat',
lonVarName='Lon')
return obsDescriptor # }}}
def build_observational_dataset(self, fileName): # {{{
'''
read in the data sets for observations, and possibly rename some
variables and dimensions
Parameters
----------
fileName : str
observation file name
Returns
-------
dsObs : ``xarray.Dataset``
The observational dataset
'''
# Authors
# -------
# Kevin Rosa, Xylar Asay-Davis
dsIn = xr.open_dataset(fileName)
scaleFactor = 100 * 100 # m2/s2 to cm2/s2
eke = 0.5 * scaleFactor * \
(dsIn['Up2bar'].values + dsIn['Vp2bar'].values)
# create a new dataset for the observations. solves transpose issues.
dsObs = xr.Dataset({'eke': (['latitude', 'longitude'], eke.T)},
coords={'Lat': (['latitude'], dsIn.Lat.values),
'Lon': (['longitude'], dsIn.Lon.values)}
)
# update attributes
dsObs.eke.attrs['units'] = 'cm$^2$ s$^{-2}$'
dsObs.eke.attrs['long_name'] = 'Eddy kinetic energy'
return dsObs # }}}
# }}}
# vim: foldmethod=marker ai ts=4 sts=4 et sw=4 ft=python