Source code for mpas_analysis.shared.io.mpas_reader

# This software is open source software available under the BSD-3 license.
#
# Copyright (c) 2022 Triad National Security, LLC. All rights reserved.
# Copyright (c) 2022 Lawrence Livermore National Security, LLC. All rights
# reserved.
# Copyright (c) 2022 UT-Battelle, LLC. All rights reserved.
#
# Additional copyright and license information can be found in the LICENSE file
# distributed with this code, or at
# https://raw.githubusercontent.com/MPAS-Dev/MPAS-Analysis/master/LICENSE
"""
Utility functions for reading a single MPAS file into xarray and for removing
all but a given list of variables from a data set.
"""
# Authors
# -------
# Xylar Asay-Davis

import xarray

from mpas_analysis.shared.timekeeping.utility import \
    string_to_days_since_date, days_to_datetime


[docs]def open_mpas_dataset(fileName, calendar, timeVariableNames=['xtime_startMonthly', 'xtime_endMonthly'], variableList=None, startDate=None, endDate=None): """ Opens and returns an xarray data set given file name(s) and the MPAS calendar name. Parameters ---------- fileName : str File path to read calendar : {``'gregorian'``, ``'gregorian_noleap'``}, optional The name of one of the calendars supported by MPAS cores timeVariableNames : str or list of 2 str, optional The name of the time variable (typically ``'xtime'`` or ``['xtime_startMonthly', 'xtime_endMonthly']``), or ``None`` if time does not need to be parsed (and is already in the ``Time`` variable) variableList : list of strings, optional If present, a list of variables to be included in the data set startDate, endDate : string or datetime.datetime, optional If present, the first and last dates to be used in the data set. The time variable is sliced to only include dates within this range. Returns ------- ds : ``xarray.Dataset`` Raises ------ TypeError If the time variable has an unsupported type (not a date string). ValueError If the time variable is not found in the data set """ # Authors # ------- # Xylar Asay-Davis ds = xarray.open_dataset(fileName, decode_cf=True, decode_times=False, lock=False) if timeVariableNames is not None: ds = _parse_dataset_time(ds, timeVariableNames, calendar) if startDate is not None and endDate is not None: if isinstance(startDate, str): startDate = string_to_days_since_date(dateString=startDate, calendar=calendar) if isinstance(endDate, str): endDate = string_to_days_since_date(dateString=endDate, calendar=calendar) # select only the data in the specified range of dates ds = ds.sel(Time=slice(startDate, endDate)) if ds.dims['Time'] == 0: raise ValueError('The data set contains no Time entries between ' 'dates {} and {}.'.format( days_to_datetime(startDate, calendar=calendar), days_to_datetime(endDate, calendar=calendar))) if variableList is not None: ds = ds[variableList] return ds
def _parse_dataset_time(ds, inTimeVariableName, calendar, outTimeVariableName='Time', referenceDate='0001-01-01'): """ A helper function for computing a time coordinate from an MPAS time variable. Given a data set and a time variable name (or list of 2 time names), returns a new data set with time coordinate `outTimeVariableName` filled with days since `referenceDate` Parameters ---------- ds : ``xarray.DataSet`` The data set containing an MPAS time variable to be used to build an xarray time coordinate. inTimeVariableName : str or tuple or list of str The name of the time variable in the MPAS data set that will be used to build the 'Time' coordinate. The array(s) named by inTimeVariableName should contain date strings. Typically, inTimeVariableName is ``'xtime'``. If a list of two variable names is provided, times from the two are averaged together to determine the value of the time coordinate. In such cases, inTimeVariableName is typically ``['xtime_startMonthly', 'xtime_endMonthly']``. calendar : {'gregorian', 'gregorian_noleap'} The name of one of the calendars supported by MPAS cores outTimeVariableName : str The name of the coordinate to assign times to, typically 'Time'. referenceDate : str, optional The reference date for the time variable, typically '0001-01-01', taking one of the following forms:: 0001-01-01 0001-01-01 00:00:00 Returns ------- dsOut : ``xarray.DataSet`` A copy of the input data set with the `outTimeVariableName` coordinate containing the time coordinate parsed from `inTimeVariableName`. Raises ------ TypeError If the time variable has an unsupported type (not a date string or a floating-pont number of days since the start of the simulatio). """ # Authors # ------- # Xylar Asay-Davis if isinstance(inTimeVariableName, (tuple, list)): # we want to average the two assert(len(inTimeVariableName) == 2) dsStart = _parse_dataset_time( ds=ds, inTimeVariableName=inTimeVariableName[0], calendar=calendar, outTimeVariableName=outTimeVariableName, referenceDate=referenceDate) dsEnd = _parse_dataset_time( ds=ds, inTimeVariableName=inTimeVariableName[1], calendar=calendar, outTimeVariableName=outTimeVariableName, referenceDate=referenceDate) starts = dsStart[outTimeVariableName].values ends = dsEnd[outTimeVariableName].values # replace the time in starts with the mean of starts and ends dsOut = dsStart.copy() dsOut.coords['startTime'] = (outTimeVariableName, starts) dsOut.coords['endTime'] = (outTimeVariableName, ends) dsOut.coords[outTimeVariableName] = (outTimeVariableName, [starts[i] + (ends[i] - starts[i]) / 2 for i in range(len(starts))]) else: # there is just one time variable (either because we're recursively # calling the function or because we're not averaging). timeVar = ds[inTimeVariableName] if timeVar.dtype != '|S64': raise TypeError("timeVar of unsupported type {}. String variable " "expected.".format(timeVar.dtype)) # this is an array of date strings like 'xtime' # convert to string timeStrings = [''.join(xtime.astype('U')).strip() for xtime in timeVar.values] days = string_to_days_since_date(dateString=timeStrings, referenceDate=referenceDate, calendar=calendar) dsOut = ds.copy() dsOut.coords[outTimeVariableName] = (outTimeVariableName, days) return dsOut # vim: ai ts=4 sts=4 et sw=4 ft=python