Source code for mpas_analysis.ocean.time_series_ocean_regions

# This software is open source software available under the BSD-3 license.
#
# Copyright (c) 2022 Triad National Security, LLC. All rights reserved.
# Copyright (c) 2022 Lawrence Livermore National Security, LLC. All rights
# reserved.
# Copyright (c) 2022 UT-Battelle, LLC. All rights reserved.
#
# Additional copyright and license information can be found in the LICENSE file
# distributed with this code, or at
# https://raw.githubusercontent.com/MPAS-Dev/MPAS-Analysis/master/LICENSE
import os
import xarray
import numpy
import matplotlib.pyplot as plt

from geometric_features import FeatureCollection, read_feature_collection
from mpas_tools.cime.constants import constants as cime_constants

from mpas_analysis.shared.analysis_task import AnalysisTask

from mpas_analysis.shared.plot import timeseries_analysis_plot, savefig, \
    add_inset

from mpas_analysis.shared.io import open_mpas_dataset, write_netcdf

from mpas_analysis.shared.io.utility import build_config_full_path, \
    build_obs_path, get_files_year_month, decode_strings, get_region_mask

from mpas_analysis.shared.html import write_image_xml

from mpas_analysis.ocean.utility import compute_zmid

from mpas_analysis.shared.constants import constants


[docs]class TimeSeriesOceanRegions(AnalysisTask): """ Performs analysis of the time-series output of regionoal mean temperature, salinity, etc. """ # Authors # ------- # Xylar Asay-Davis
[docs] def __init__(self, config, regionMasksTask, controlConfig=None): """ Construct the analysis task. Parameters ---------- config : mpas_tools.config.MpasConfigParser Configuration options regionMasksTask : ``ComputeRegionMasks`` A task for computing region masks controlconfig : mpas_tools.config.MpasConfigParser, optional Configuration options for a control run (if any) """ # Authors # ------- # Xylar Asay-Davis # first, call the constructor from the base class (AnalysisTask) super(TimeSeriesOceanRegions, self).__init__( config=config, taskName='timeSeriesOceanRegions', componentName='ocean', tags=['timeSeries', 'regions', 'antarctic']) startYear = config.getint('timeSeries', 'startYear') endYear = config.get('timeSeries', 'endYear') if endYear == 'end': # a valid end year wasn't found, so likely the run was not found, # perhaps because we're just listing analysis tasks endYear = startYear else: endYear = int(endYear) regionGroups = config.getexpression(self.taskName, 'regionGroups') obsDicts = { 'SOSE': { 'suffix': 'SOSE', 'gridName': 'SouthernOcean_0.167x0.167degree', 'gridFileName': 'SOSE/SOSE_2005-2010_monthly_pot_temp_' 'SouthernOcean_0.167x0.167degree_20180710.nc', 'TFileName': 'SOSE/SOSE_2005-2010_monthly_pot_temp_' 'SouthernOcean_0.167x0.167degree_20180710.nc', 'SFileName': 'SOSE/SOSE_2005-2010_monthly_salinity_' 'SouthernOcean_0.167x0.167degree_20180710.nc', 'volFileName': 'SOSE/SOSE_volume_' 'SouthernOcean_0.167x0.167degree_20190815.nc', 'lonVar': 'lon', 'latVar': 'lat', 'TVar': 'theta', 'SVar': 'salinity', 'volVar': 'volume', 'zVar': 'z', 'tDim': 'Time', 'legend': 'SOSE 2005-2010 ANN mean'}, 'WOA18': { 'suffix': 'WOA18', 'gridName': 'Global_0.25x0.25degree', 'gridFileName': 'WOA18/woa18_decav_04_TS_mon_20190829.nc', 'TFileName': 'WOA18/woa18_decav_04_TS_mon_20190829.nc', 'SFileName': 'WOA18/woa18_decav_04_TS_mon_20190829.nc', 'volFileName': None, 'lonVar': 'lon', 'latVar': 'lat', 'TVar': 't_an', 'SVar': 's_an', 'volVar': 'volume', 'zVar': 'depth', 'tDim': 'month', 'legend': 'WOA18 1955-2017 ANN mean'}} for regionGroup in regionGroups: sectionSuffix = regionGroup[0].upper() + \ regionGroup[1:].replace(' ', '') sectionName = 'timeSeries{}'.format(sectionSuffix) regionNames = config.getexpression(sectionName, 'regionNames') if len(regionNames) == 0: # no regions in this group were requested continue masksSubtask = regionMasksTask.add_mask_subtask( regionGroup=regionGroup) regionNames = masksSubtask.expand_region_names(regionNames) years = list(range(startYear, endYear + 1)) obsList = config.getexpression(sectionName, 'obs') groupObsDicts = {} for obsName in obsList: localObsDict = dict(obsDicts[obsName]) obsFileName = build_obs_path( config, component=self.componentName, relativePath=localObsDict['gridFileName']) obsMasksSubtask = regionMasksTask.add_mask_subtask( regionGroup=regionGroup, obsFileName=obsFileName, lonVar=localObsDict['lonVar'], latVar=localObsDict['latVar'], meshName=localObsDict['gridName']) obsDicts[obsName]['maskTask'] = obsMasksSubtask localObsDict['maskTask'] = obsMasksSubtask groupObsDicts[obsName] = localObsDict # in the end, we'll combine all the time series into one, but we # create this task first so it's easier to tell it to run after all # the compute tasks combineSubtask = CombineRegionalProfileTimeSeriesSubtask( self, startYears=years, endYears=years, regionGroup=regionGroup) depthMasksSubtask = ComputeRegionDepthMasksSubtask( self, masksSubtask=masksSubtask, regionGroup=regionGroup, regionNames=regionNames) depthMasksSubtask.run_after(masksSubtask) # run one subtask per year for year in years: computeSubtask = ComputeRegionTimeSeriesSubtask( self, startYear=year, endYear=year, masksSubtask=masksSubtask, regionGroup=regionGroup, regionNames=regionNames) self.add_subtask(computeSubtask) computeSubtask.run_after(depthMasksSubtask) computeSubtask.run_after(masksSubtask) combineSubtask.run_after(computeSubtask) self.add_subtask(combineSubtask) for index, regionName in enumerate(regionNames): fullSuffix = sectionSuffix + '_' + regionName.replace(' ', '') obsSubtasks = {} for obsName in obsList: localObsDict = dict(groupObsDicts[obsName]) obsSubtask = ComputeObsRegionalTimeSeriesSubtask( self, regionGroup, regionName, fullSuffix, localObsDict) obsSubtasks[obsName] = obsSubtask plotRegionSubtask = PlotRegionTimeSeriesSubtask( self, regionGroup, regionName, index, controlConfig, sectionName, fullSuffix, obsSubtasks, masksSubtask.geojsonFileName) plotRegionSubtask.run_after(combineSubtask) self.add_subtask(plotRegionSubtask)
class ComputeRegionDepthMasksSubtask(AnalysisTask): """ Compute masks for regional and depth mean Attributes ---------- masksSubtask : ``ComputeRegionMasksSubtask`` A task for creating mask files for each region to plot regionGroup : str The name of the region group being computed (e.g. "Antarctic Basins") regionNames : list of str The names of the regions to compute """ # Authors # ------- # Xylar Asay-Davis def __init__(self, parentTask, masksSubtask, regionGroup, regionNames): """ Construct the analysis task. Parameters ---------- parentTask : ``TimeSeriesOceanRegions`` The main task of which this is a subtask masksSubtask : ``ComputeRegionMasksSubtask`` A task for creating mask files for each region to plot regionGroup : str The name of the region group being computed (e.g. "Antarctic Basins") regionNames : list of str The names of the regions to compute """ # Authors # ------- # Xylar Asay-Davis suffix = regionGroup[0].upper() + regionGroup[1:].replace(' ', '') # first, call the constructor from the base class (AnalysisTask) super(ComputeRegionDepthMasksSubtask, self).__init__( config=parentTask.config, taskName=parentTask.taskName, componentName=parentTask.componentName, tags=parentTask.tags, subtaskName='computeDepthMask{}'.format(suffix)) parentTask.add_subtask(self) self.masksSubtask = masksSubtask self.regionGroup = regionGroup self.regionNames = regionNames def run_task(self): """ Compute the regional-mean time series """ # Authors # ------- # Xylar Asay-Davis config = self.config self.logger.info("\nCompute depth mask for regional means...") regionGroup = self.regionGroup sectionSuffix = regionGroup[0].upper() + \ regionGroup[1:].replace(' ', '') timeSeriesName = sectionSuffix sectionName = 'timeSeries{}'.format(sectionSuffix) outputDirectory = '{}/{}/'.format( build_config_full_path(config, 'output', 'timeseriesSubdirectory'), timeSeriesName) try: os.makedirs(outputDirectory) except OSError: pass outFileName = '{}/depthMasks_{}.nc'.format(outputDirectory, timeSeriesName) if os.path.exists(outFileName): self.logger.info(' Mask file exists -- Done.') return # Load mesh related variables try: restartFileName = self.runStreams.readpath('restart')[0] except ValueError: raise IOError('No MPAS-O restart file found: need at least one ' 'restart file for ocean region time series') if config.has_option(sectionName, 'zmin'): config_zmin = config.getfloat(sectionName, 'zmin') else: config_zmin = None if config.has_option(sectionName, 'zmax'): config_zmax = config.getfloat(sectionName, 'zmax') else: config_zmax = None dsRestart = xarray.open_dataset(restartFileName).isel(Time=0) zMid = compute_zmid(dsRestart.bottomDepth, dsRestart.maxLevelCell-1, dsRestart.layerThickness) areaCell = dsRestart.areaCell if 'landIceMask' in dsRestart: # only the region outside of ice-shelf cavities openOceanMask = dsRestart.landIceMask == 0 else: openOceanMask = None regionMaskFileName = self.masksSubtask.maskFileName dsRegionMask = xarray.open_dataset(regionMaskFileName) maskRegionNames = decode_strings(dsRegionMask.regionNames) regionIndices = [] for regionName in self.regionNames: for index, otherName in enumerate(maskRegionNames): if regionName == otherName: regionIndices.append(index) break # select only those regions we want to plot dsRegionMask = dsRegionMask.isel(nRegions=regionIndices) nRegions = dsRegionMask.sizes['nRegions'] datasets = [] for regionIndex in range(nRegions): self.logger.info(' region: {}'.format( self.regionNames[regionIndex])) dsRegion = dsRegionMask.isel(nRegions=regionIndex) cellMask = dsRegion.regionCellMasks == 1 if openOceanMask is not None: cellMask = numpy.logical_and(cellMask, openOceanMask) totalArea = areaCell.where(cellMask).sum() self.logger.info(' totalArea: {} mil. km^2'.format( 1e-12 * totalArea.values)) if config_zmin is None: if 'zminRegions' in dsRegion: zmin = dsRegion.zminRegions.values else: # the old naming convention, used in some pre-generated # mask files zmin = dsRegion.zmin.values else: zmin = config_zmin if config_zmax is None: if 'zmaxRegions' in dsRegion: zmax = dsRegion.zmaxRegions.values else: # the old naming convention, used in some pre-generated # mask files zmax = dsRegion.zmax.values else: zmax = config_zmax depthMask = numpy.logical_and(zMid >= zmin, zMid <= zmax) dsOut = xarray.Dataset() dsOut['zmin'] = ('nRegions', [zmin]) dsOut['zmax'] = ('nRegions', [zmax]) dsOut['totalArea'] = totalArea dsOut['cellMask'] = cellMask dsOut['depthMask'] = depthMask datasets.append(dsOut) dsOut = xarray.concat(objs=datasets, dim='nRegions') zbounds = numpy.zeros((nRegions, 2)) zbounds[:, 0] = dsOut.zmin.values zbounds[:, 1] = dsOut.zmax.values dsOut['zbounds'] = (('nRegions', 'nbounds'), zbounds) dsOut['areaCell'] = areaCell dsOut['regionNames'] = dsRegionMask.regionNames write_netcdf(dsOut, outFileName) class ComputeRegionTimeSeriesSubtask(AnalysisTask): """ Compute regional and depth mean at a function of time for a set of MPAS fields Attributes ---------- startYear, endYear : int The beginning and end of the time series to compute masksSubtask : ``ComputeRegionMasksSubtask`` A task for creating mask files for each region to plot regionGroup : str The name of the region group being computed (e.g. "Antarctic Basins") regionNames : list of str The names of the regions to compute """ # Authors # ------- # Xylar Asay-Davis def __init__(self, parentTask, startYear, endYear, masksSubtask, regionGroup, regionNames): """ Construct the analysis task. Parameters ---------- parentTask : TimeSeriesOceanRegions The main task of which this is a subtask startYear, endYear : int The beginning and end of the time series to compute masksSubtask : ``ComputeRegionMasksSubtask`` A task for creating mask files for each region to plot regionGroup : str The name of the region group being computed (e.g. "Antarctic Basins") regionNames : list of str The names of the regions to compute """ # Authors # ------- # Xylar Asay-Davis suffix = regionGroup[0].upper() + regionGroup[1:].replace(' ', '') # first, call the constructor from the base class (AnalysisTask) super(ComputeRegionTimeSeriesSubtask, self).__init__( config=parentTask.config, taskName=parentTask.taskName, componentName=parentTask.componentName, tags=parentTask.tags, subtaskName='compute{}_{:04d}-{:04d}'.format(suffix, startYear, endYear)) parentTask.add_subtask(self) self.startYear = startYear self.endYear = endYear self.masksSubtask = masksSubtask self.regionGroup = regionGroup self.regionNames = regionNames def setup_and_check(self): """ Perform steps to set up the analysis and check for errors in the setup. Raises ------ ValueError if timeSeriesStatsMonthly is not enabled in the MPAS run """ # Authors # ------- # Xylar Asay-Davis # first, call setup_and_check from the base class (AnalysisTask), # which will perform some common setup, including storing: # self.runDirectory , self.historyDirectory, self.plotsDirectory, # self.namelist, self.runStreams, self.historyStreams, # self.calendar super(ComputeRegionTimeSeriesSubtask, self).setup_and_check() self.check_analysis_enabled( analysisOptionName='config_am_timeseriesstatsmonthly_enable', raiseException=True) def run_task(self): """ Compute the regional-mean time series """ # Authors # ------- # Xylar Asay-Davis config = self.config self.logger.info("\nCompute time series of regional means...") startDate = '{:04d}-01-01_00:00:00'.format(self.startYear) endDate = '{:04d}-12-31_23:59:59'.format(self.endYear) regionGroup = self.regionGroup sectionSuffix = regionGroup[0].upper() + \ regionGroup[1:].replace(' ', '') timeSeriesName = sectionSuffix sectionName = 'timeSeries{}'.format(sectionSuffix) outputDirectory = '{}/{}/'.format( build_config_full_path(config, 'output', 'timeseriesSubdirectory'), timeSeriesName) try: os.makedirs(outputDirectory) except OSError: pass outFileName = '{}/{}_{:04d}-{:04d}.nc'.format( outputDirectory, timeSeriesName, self.startYear, self.endYear) inputFiles = sorted(self.historyStreams.readpath( 'timeSeriesStatsMonthlyOutput', startDate=startDate, endDate=endDate, calendar=self.calendar)) years, months = get_files_year_month(inputFiles, self.historyStreams, 'timeSeriesStatsMonthlyOutput') variables = config.getexpression(sectionName, 'variables') variableList = {'timeMonthly_avg_layerThickness'} for var in variables: mpas_var = var['mpas'] if mpas_var == 'none': continue if isinstance(mpas_var, (list, tuple)): for v in mpas_var: variableList.add(v) else: variableList.add(mpas_var) outputExists = os.path.exists(outFileName) outputValid = outputExists if outputExists: with open_mpas_dataset(fileName=outFileName, calendar=self.calendar, timeVariableNames=None, variableList=None, startDate=startDate, endDate=endDate) as dsOut: for inIndex in range(dsOut.dims['Time']): mask = numpy.logical_and( dsOut.year[inIndex].values == years, dsOut.month[inIndex].values == months) if numpy.count_nonzero(mask) == 0: outputValid = False break if outputValid: self.logger.info(' Time series exists -- Done.') return regionMaskFileName = '{}/depthMasks_{}.nc'.format(outputDirectory, timeSeriesName) dsRegionMask = xarray.open_dataset(regionMaskFileName) nRegions = dsRegionMask.sizes['nRegions'] areaCell = dsRegionMask.areaCell datasets = [] nTime = len(inputFiles) for tIndex in range(nTime): self.logger.info(' {}/{}'.format(tIndex + 1, nTime)) dsIn = open_mpas_dataset( fileName=inputFiles[tIndex], calendar=self.calendar, variableList=variableList, startDate=startDate, endDate=endDate).isel(Time=0) dsIn.load() layerThickness = dsIn.timeMonthly_avg_layerThickness innerDatasets = [] for regionIndex in range(nRegions): self.logger.info(' region: {}'.format( self.regionNames[regionIndex])) dsRegion = dsRegionMask.isel(nRegions=regionIndex) dsRegion.load() cellMask = dsRegion.cellMask totalArea = dsRegion.totalArea depthMask = dsRegion.depthMask.where(cellMask, drop=True) localArea = areaCell.where(cellMask, drop=True) localThickness = layerThickness.where(cellMask, drop=True) volCell = (localArea*localThickness).where(depthMask) volCell = volCell.transpose('nCells', 'nVertLevels') totalVol = volCell.sum(dim='nVertLevels').sum(dim='nCells') self.logger.info(' totalVol (mil. km^3): {}'.format( 1e-15*totalVol.values)) dsOut = xarray.Dataset() dsOut['totalVol'] = totalVol dsOut.totalVol.attrs['units'] = 'm^3' for var in variables: outName = var['name'] self.logger.info(' {}'.format(outName)) if outName == 'thermalForcing': timeSeries = self._add_thermal_forcing(dsIn, cellMask) units = 'degrees Celsius' description = 'potential temperature minus the ' \ 'potential freezing temperature' else: mpasVarName = var['mpas'] timeSeries = \ dsIn[mpasVarName].where(cellMask, drop=True) units = timeSeries.units description = timeSeries.long_name is3d = 'nVertLevels' in timeSeries.dims if is3d: timeSeries = \ (volCell*timeSeries.where(depthMask)).sum( dim='nVertLevels').sum(dim='nCells') / totalVol else: timeSeries = \ (localArea*timeSeries).sum( dim='nCells') / totalArea dsOut[outName] = timeSeries dsOut[outName].attrs['units'] = units dsOut[outName].attrs['description'] = description dsOut[outName].attrs['is3d'] = str(is3d) innerDatasets.append(dsOut) datasets.append(innerDatasets) # combine data sets into a single data set dsOut = xarray.combine_nested(datasets, ['Time', 'nRegions'], combine_attrs='identical') dsOut['totalArea'] = dsRegionMask.totalArea dsOut.totalArea.attrs['units'] = 'm^2' dsOut['zbounds'] = dsRegionMask.zbounds dsOut.zbounds.attrs['units'] = 'm' dsOut.coords['regionNames'] = dsRegionMask.regionNames dsOut.coords['year'] = (('Time',), years) dsOut['year'].attrs['units'] = 'years' dsOut.coords['month'] = (('Time',), months) dsOut['month'].attrs['units'] = 'months' write_netcdf(dsOut, outFileName) def _add_thermal_forcing(self, dsIn, cellMask): """ compute the thermal forcing """ c0 = self.namelist.getfloat( 'config_land_ice_cavity_freezing_temperature_coeff_0') cs = self.namelist.getfloat( 'config_land_ice_cavity_freezing_temperature_coeff_S') cp = self.namelist.getfloat( 'config_land_ice_cavity_freezing_temperature_coeff_p') cps = self.namelist.getfloat( 'config_land_ice_cavity_freezing_temperature_coeff_pS') vars = ['timeMonthly_avg_activeTracers_temperature', 'timeMonthly_avg_activeTracers_salinity', 'timeMonthly_avg_density', 'timeMonthly_avg_layerThickness'] ds = dsIn[vars].where(cellMask, drop=True) temp = ds.timeMonthly_avg_activeTracers_temperature salin = ds.timeMonthly_avg_activeTracers_salinity dens = ds.timeMonthly_avg_density thick = ds.timeMonthly_avg_layerThickness dp = cime_constants['SHR_CONST_G']*dens*thick press = dp.cumsum(dim='nVertLevels') - 0.5*dp tempFreeze = c0 + cs*salin + cp*press + cps*press*salin timeSeries = temp - tempFreeze return timeSeries class CombineRegionalProfileTimeSeriesSubtask(AnalysisTask): """ Combine individual time series into a single data set """ # Authors # ------- # Xylar Asay-Davis def __init__(self, parentTask, startYears, endYears, regionGroup): """ Construct the analysis task. Parameters ---------- parentTask : TimeSeriesOceanRegions The main task of which this is a subtask startYears, endYears : list of int The beginning and end of each time series to combine regionGroup : str The name of the region group being computed (e.g. "Antarctic Basins") """ # Authors # ------- # Xylar Asay-Davis taskSuffix = regionGroup[0].upper() + regionGroup[1:].replace(' ', '') subtaskName = 'combine{}TimeSeries'.format(taskSuffix) # first, call the constructor from the base class (AnalysisTask) super(CombineRegionalProfileTimeSeriesSubtask, self).__init__( config=parentTask.config, taskName=parentTask.taskName, componentName=parentTask.componentName, tags=parentTask.tags, subtaskName=subtaskName) self.startYears = startYears self.endYears = endYears self.regionGroup = regionGroup def run_task(self): """ Combine the time series """ # Authors # ------- # Xylar Asay-Davis regionGroup = self.regionGroup timeSeriesName = regionGroup.replace(' ', '') outputDirectory = '{}/{}/'.format( build_config_full_path(self.config, 'output', 'timeseriesSubdirectory'), timeSeriesName) outFileName = '{}/{}_{:04d}-{:04d}.nc'.format( outputDirectory, timeSeriesName, self.startYears[0], self.endYears[-1]) if not os.path.exists(outFileName): inFileNames = [] for startYear, endYear in zip(self.startYears, self.endYears): inFileName = '{}/{}_{:04d}-{:04d}.nc'.format( outputDirectory, timeSeriesName, startYear, endYear) inFileNames.append(inFileName) ds = xarray.open_mfdataset(inFileNames, combine='nested', concat_dim='Time', decode_times=False) ds.load() # a few variables have become time dependent and shouldn't be for var in ['totalArea', 'zbounds']: ds[var] = ds[var].isel(Time=0, drop=True) write_netcdf(ds, outFileName) class ComputeObsRegionalTimeSeriesSubtask(AnalysisTask): """ Compute the regional mean of the obs climatology Attributes ---------- """ # Authors # ------- # Xylar Asay-Davis def __init__(self, parentTask, regionGroup, regionName, fullSuffix, obsDict): """ Construct the analysis task. Parameters ---------- parentTask : ``AnalysisTask`` The parent task, used to get the ``taskName``, ``config`` and ``componentName`` regionGroup : str Name of the collection of region to plot regionName : str Name of the region to plot fullSuffix : str The regionGroup and regionName combined and modified to be appropriate as a task or file suffix obsDict : dict Information on the observations to compare against """ # Authors # ------- # Xylar Asay-Davis # first, call the constructor from the base class (AnalysisTask) super(ComputeObsRegionalTimeSeriesSubtask, self).__init__( config=parentTask.config, taskName=parentTask.taskName, componentName=parentTask.componentName, tags=parentTask.tags, subtaskName='compute{}_{}'.format(fullSuffix, obsDict['suffix'])) self.regionGroup = regionGroup self.regionName = regionName self.obsDict = obsDict self.prefix = fullSuffix timeSeriesName = regionGroup.replace(' ', '') outputDirectory = '{}/{}/'.format( build_config_full_path(self.config, 'output', 'timeseriesSubdirectory'), timeSeriesName) self.outFileName = '{}/TS_{}_{}.nc'.format( outputDirectory, obsDict['suffix'], self.prefix) self.run_after(obsDict['maskTask']) def run_task(self): """ Compute time-series output of properties in an ocean region. """ # Authors # ------- # Xylar Asay-Davis self.logger.info("\nAveraging T and S for {}...".format( self.regionName)) obsDict = self.obsDict config = self.config regionGroup = self.regionGroup timeSeriesName = regionGroup.replace(' ', '') sectionSuffix = regionGroup[0].upper() + \ regionGroup[1:].replace(' ', '') sectionName = 'timeSeries{}'.format(sectionSuffix) outputDirectory = '{}/{}/'.format( build_config_full_path(self.config, 'output', 'timeseriesSubdirectory'), timeSeriesName) try: os.makedirs(outputDirectory) except OSError: pass outFileName = '{}/TS_{}_{}.nc'.format( outputDirectory, obsDict['suffix'], self.prefix) if os.path.exists(outFileName): return regionMaskFileName = obsDict['maskTask'].maskFileName print(regionMaskFileName) print(xarray.open_dataset(regionMaskFileName)) dsRegionMask = \ xarray.open_dataset(regionMaskFileName).stack( nCells=(obsDict['latVar'], obsDict['lonVar'])) dsRegionMask = dsRegionMask.reset_index('nCells').drop_vars( [obsDict['latVar'], obsDict['lonVar'], 'nCells']) maskRegionNames = decode_strings(dsRegionMask.regionNames) regionIndex = maskRegionNames.index(self.regionName) dsMask = dsRegionMask.isel(nRegions=regionIndex) cellMask = dsMask.regionCellMasks == 1 if config.has_option(sectionName, 'zmin'): zmin = config.getfloat(sectionName, 'zmin') else: zmin = dsMask.zminRegions.values if config.has_option(sectionName, 'zmax'): zmax = config.getfloat(sectionName, 'zmax') else: zmax = dsMask.zmaxRegions.values TVarName = obsDict['TVar'] SVarName = obsDict['SVar'] zVarName = obsDict['zVar'] lonVarName = obsDict['lonVar'] latVarName = obsDict['latVar'] volVarName = obsDict['volVar'] tDim = obsDict['tDim'] obsFileName = build_obs_path( config, component=self.componentName, relativePath=obsDict['TFileName']) self.logger.info(' Reading from {}...'.format(obsFileName)) ds = xarray.open_dataset(obsFileName) if obsDict['SFileName'] != obsDict['TFileName']: obsFileName = build_obs_path( config, component=self.componentName, relativePath=obsDict['SFileName']) self.logger.info(' Reading from {}...'.format(obsFileName)) dsS = xarray.open_dataset(obsFileName) ds[SVarName] = dsS[SVarName] if obsDict['volFileName'] is None: # compute volume from lat, lon, depth bounds self.logger.info(' Computing volume...'.format(obsFileName)) latBndsName = ds[latVarName].attrs['bounds'] lonBndsName = ds[lonVarName].attrs['bounds'] zBndsName = ds[zVarName].attrs['bounds'] latBnds = ds[latBndsName] lonBnds = ds[lonBndsName] zBnds = ds[zBndsName] dLat = numpy.deg2rad(latBnds[:, 1] - latBnds[:, 0]) dLon = numpy.deg2rad(lonBnds[:, 1] - lonBnds[:, 0]) lat = numpy.deg2rad(ds[latVarName]) dz = zBnds[:, 1] - zBnds[:, 0] radius = 6378137.0 area = radius**2*numpy.cos(lat)*dLat*dLon volume = dz*area ds[volVarName] = volume elif obsDict['volFileName'] != obsDict['TFileName']: obsFileName = build_obs_path( config, component=self.componentName, relativePath=obsDict['volFileName']) self.logger.info(' Reading from {}...'.format(obsFileName)) dsVol = xarray.open_dataset(obsFileName) ds[volVarName] = dsVol[volVarName] if 'positive' in ds[zVarName].attrs and \ ds[zVarName].attrs['positive'] == 'down': attrs = ds[zVarName].attrs ds[zVarName] = -ds[zVarName] ds[zVarName].attrs = attrs ds[zVarName].attrs['positive'] = 'up' TMean = numpy.zeros(ds.sizes[tDim]) SMean = numpy.zeros(ds.sizes[tDim]) depthMask = numpy.logical_and(ds[zVarName] >= zmin, ds[zVarName] <= zmax) for tIndex in range(ds.sizes[tDim]): dsMonth = ds.isel({tDim: tIndex}) dsMonth = dsMonth.stack(nCells=(obsDict['latVar'], obsDict['lonVar'])) dsMonth = dsMonth.reset_index('nCells').drop_vars( [obsDict['latVar'], obsDict['lonVar'], 'nCells']) dsMonth = dsMonth.where(cellMask, drop=True) dsMonth = dsMonth.where(depthMask) mask = dsMonth[TVarName].notnull() TSum = (dsMonth[TVarName]*dsMonth[volVarName]).sum(dim=('nCells', zVarName)) volSum = (mask*dsMonth[volVarName]).sum(dim=('nCells', zVarName)) TMean[tIndex] = TSum/volSum mask = dsMonth[SVarName].notnull() SSum = (dsMonth[SVarName]*dsMonth[volVarName]).sum(dim=('nCells', zVarName)) volSum = (mask*dsMonth[volVarName]).sum(dim=('nCells', zVarName)) SMean[tIndex] = SSum/volSum dsOut = xarray.Dataset() dsOut['temperature'] = ('Time', TMean) dsOut['salinity'] = ('Time', SMean) dsOut['zbounds'] = ('nBounds', [zmin, zmax]) dsOut['month'] = ('Time', numpy.array(ds.month.values, dtype=float)) dsOut['year'] = ('Time', numpy.ones(ds.sizes[tDim])) write_netcdf(dsOut, outFileName) class PlotRegionTimeSeriesSubtask(AnalysisTask): """ Plots time-series output of properties in an ocean region. Attributes ---------- regionGroup : str Name of the collection of region to plot regionName : str Name of the region to plot regionIndex : int The index into the dimension ``nRegions`` of the region to plot sectionName : str The section of the config file to get options from controlConfig : mpas_tools.config.MpasConfigParser The configuration options for the control run (if any) """ # Authors # ------- # Xylar Asay-Davis def __init__(self, parentTask, regionGroup, regionName, regionIndex, controlConfig, sectionName, fullSuffix, obsSubtasks, geojsonFileName): """ Construct the analysis task. Parameters ---------- parentTask : TimeSeriesOceanRegions The parent task, used to get the ``taskName``, ``config`` and ``componentName`` regionGroup : str Name of the collection of region to plot regionName : str Name of the region to plot regionIndex : int The index into the dimension ``nRegions`` of the region to plot controlconfig : mpas_tools.config.MpasConfigParser, optional Configuration options for a control run (if any) sectionName : str The config section with options for this regionGroup fullSuffix : str The regionGroup and regionName combined and modified to be appropriate as a task or file suffix obsSubtasks : dict of ``AnalysisTasks`` Subtasks for computing the mean observed T and S in the region geojsonFileName : str The geojson file including the feature to plot """ # Authors # ------- # Xylar Asay-Davis # first, call the constructor from the base class (AnalysisTask) super(PlotRegionTimeSeriesSubtask, self).__init__( config=parentTask.config, taskName=parentTask.taskName, componentName=parentTask.componentName, tags=parentTask.tags, subtaskName='plot{}'.format(fullSuffix)) self.regionGroup = regionGroup self.regionName = regionName self.regionIndex = regionIndex self.sectionName = sectionName self.controlConfig = controlConfig self.prefix = fullSuffix self.obsSubtasks = obsSubtasks self.geojsonFileName = geojsonFileName for obsName in obsSubtasks: self.run_after(obsSubtasks[obsName]) def setup_and_check(self): """ Perform steps to set up the analysis and check for errors in the setup. Raises ------ IOError If files are not present """ # Authors # ------- # Xylar Asay-Davis # first, call setup_and_check from the base class (AnalysisTask), # which will perform some common setup, including storing: # self.inDirectory, self.plotsDirectory, self.namelist, self.streams # self.calendar super(PlotRegionTimeSeriesSubtask, self).setup_and_check() self.variables = self.config.getexpression(self.sectionName, 'variables') self.xmlFileNames = [] for var in self.variables: self.xmlFileNames.append('{}/{}_{}.xml'.format( self.plotsDirectory, self.prefix, var['name'])) return def run_task(self): """ Plots time-series output of properties in an ocean region. """ # Authors # ------- # Xylar Asay-Davis self.logger.info("\nPlotting time series of ocean properties of {}" "...".format(self.regionName)) self.logger.info(' Load time series...') config = self.config calendar = self.calendar fcAll = read_feature_collection(self.geojsonFileName) fc = FeatureCollection() for feature in fcAll.features: if feature['properties']['name'] == self.regionName: fc.add_feature(feature) break baseDirectory = build_config_full_path( config, 'output', 'timeSeriesSubdirectory') startYear = config.getint('timeSeries', 'startYear') endYear = config.getint('timeSeries', 'endYear') regionGroup = self.regionGroup timeSeriesName = regionGroup.replace(' ', '') inFileName = '{}/{}/{}_{:04d}-{:04d}.nc'.format( baseDirectory, timeSeriesName, timeSeriesName, startYear, endYear) dsIn = xarray.open_dataset(inFileName).isel(nRegions=self.regionIndex) zbounds = dsIn.zbounds.values controlConfig = self.controlConfig plotControl = controlConfig is not None if plotControl: controlRunName = controlConfig.get('runs', 'mainRunName') baseDirectory = build_config_full_path( controlConfig, 'output', 'timeSeriesSubdirectory') startYear = controlConfig.getint('timeSeries', 'startYear') endYear = controlConfig.getint('timeSeries', 'endYear') inFileName = '{}/{}/{}_{:04d}-{:04d}.nc'.format( baseDirectory, timeSeriesName, timeSeriesName, startYear, endYear) dsRef = xarray.open_dataset(inFileName).isel( nRegions=self.regionIndex) zboundsRef = dsRef.zbounds.values mainRunName = config.get('runs', 'mainRunName') movingAveragePoints = 1 self.logger.info(' Make plots...') groupLink = self.regionGroup.replace(' ', '') for var in self.variables: varName = var['name'] mainArray = dsIn[varName] is3d = mainArray.attrs['is3d'] == 'True' if is3d: title = 'Volume-Mean {} in {}'.format( var['title'], self.regionName) else: title = 'Area-Mean {} in {}'.format(var['title'], self.regionName) if plotControl: refArray = dsRef[varName] xLabel = 'Time (yr)' yLabel = '{} ({})'.format(var['title'], var['units']) filePrefix = '{}_{}'.format(self.prefix, varName) outFileName = '{}/{}.png'.format(self.plotsDirectory, filePrefix) fields = [mainArray] lineColors = [config.get('timeSeries', 'mainColor')] lineWidths = [2.5] legendText = [mainRunName] if plotControl: fields.append(refArray) lineColors.append(config.get('timeSeries', 'controlColor')) lineWidths.append(1.2) legendText.append(controlRunName) if varName in ['temperature', 'salinity']: obsColors = [ config.get('timeSeries', 'obsColor{}'.format(index + 1)) for index in range(5)] daysInMonth = constants.daysInMonth for obsName in self.obsSubtasks: obsFileName = self.obsSubtasks[obsName].outFileName obsDict = self.obsSubtasks[obsName].obsDict dsObs = xarray.open_dataset(obsFileName) endMonthDays = numpy.cumsum(daysInMonth) midMonthDays = endMonthDays - 0.5*daysInMonth obsTime = [] fieldMean = \ numpy.sum(dsObs[varName].values*daysInMonth)/365. for year in range(startYear, endYear+1): obsTime.append(midMonthDays + 365.*(year-1.)) obsTime = numpy.array(obsTime).ravel() obsField = fieldMean*numpy.ones(obsTime.shape) da = xarray.DataArray(data=obsField, dims='Time', coords=[('Time', obsTime)]) fields.append(da) lineColors.append(obsColors.pop(0)) lineWidths.append(1.2) legendText.append(obsDict['legend']) if is3d: if not plotControl or numpy.all(zbounds == zboundsRef): title = '{} ({} < z < {} m)'.format(title, zbounds[0], zbounds[1]) else: legendText[0] = '{} ({} < z < {} m)'.format( legendText[0], zbounds[0], zbounds[1]) legendText[1] = '{} ({} < z < {} m)'.format( legendText[1], zboundsRef[0], zboundsRef[1]) sectionName = self.sectionName if config.has_option(sectionName, 'titleFontSize'): titleFontSize = config.getint(sectionName, 'titleFontSize') else: titleFontSize = None if config.has_option(sectionName, 'defaultFontSize'): defaultFontSize = config.getint(sectionName, 'defaultFontSize') else: defaultFontSize = None fig = timeseries_analysis_plot( config, fields, calendar=calendar, title=title, xlabel=xLabel, ylabel=yLabel, movingAveragePoints=movingAveragePoints, lineColors=lineColors, lineWidths=lineWidths, legendText=legendText, titleFontSize=titleFontSize, defaultFontSize=defaultFontSize) # do this before the inset because otherwise it moves the inset # and cartopy doesn't play too well with tight_layout anyway plt.tight_layout() add_inset(fig, fc, width=2.0, height=2.0) savefig(outFileName, config, tight=False) caption = 'Regional mean of {}'.format(title) write_image_xml( config=config, filePrefix=filePrefix, componentName='Ocean', componentSubdirectory='ocean', galleryGroup='{} Time Series'.format(self.regionGroup), groupLink=groupLink, gallery=var['title'], thumbnailDescription=self.regionName, imageDescription=caption, imageCaption=caption)