Source code for mpas_analysis.ocean.climatology_map_ohc_anomaly

# This software is open source software available under the BSD-3 license.
#
# Copyright (c) 2022 Triad National Security, LLC. All rights reserved.
# Copyright (c) 2022 Lawrence Livermore National Security, LLC. All rights
# reserved.
# Copyright (c) 2022 UT-Battelle, LLC. All rights reserved.
#
# Additional copyright and license information can be found in the LICENSE file
# distributed with this code, or at
# https://raw.githubusercontent.com/MPAS-Dev/MPAS-Analysis/master/LICENSE
import xarray as xr
import numpy as np

from mpas_analysis.shared import AnalysisTask
from mpas_analysis.shared.climatology import RemapMpasClimatologySubtask
from mpas_analysis.ocean.plot_climatology_map_subtask import \
    PlotClimatologyMapSubtask
from mpas_analysis.ocean.utility import compute_zmid


[docs]class ClimatologyMapOHCAnomaly(AnalysisTask): """ An analysis task for comparison of the anomaly from a reference year (typically the start of the simulation) of ocean heat content (OHC) Attributes ---------- mpas_climatology_task : mpas_analysis.shared.climatology.MpasClimatologyTask The task that produced the climatology to be remapped and plotted ref_year_climatology_task : mpas_analysis.shared.climatology.RefYearMpasClimatologyTask The task that produced the climatology from the first year to be remapped and then subtracted from the main climatology """
[docs] def __init__(self, config, mpas_climatology_task, ref_year_climatology_task, control_config=None): """ Construct the analysis task. Parameters ---------- config : mpas_tools.config.MpasConfigParser Configuration options mpas_climatology_task : mpas_analysis.shared.climatology.MpasClimatologyTask The task that produced the climatology to be remapped and plotted ref_year_climatology_task : mpas_analysis.shared.climatology.RefYearMpasClimatologyTask The task that produced the climatology from the first year to be remapped and then subtracted from the main climatology control_config : mpas_tools.config.MpasConfigParser, optional Configuration options for a control run (if any) """ field_name = 'deltaOHC' # call the constructor from the base class (AnalysisTask) super().__init__(config=config, taskName='climatologyMapOHCAnomaly', componentName='ocean', tags=['climatology', 'horizontalMap', field_name, 'publicObs', 'anomaly']) self.mpas_climatology_task = mpas_climatology_task self.ref_year_climatology_task = ref_year_climatology_task section_name = self.taskName # read in what seasons we want to plot seasons = config.getexpression(section_name, 'seasons') if len(seasons) == 0: raise ValueError(f'config section {section_name} does not contain ' f'valid list of seasons') comparison_grid_names = config.getexpression(section_name, 'comparisonGrids') if len(comparison_grid_names) == 0: raise ValueError(f'config section {section_name} does not contain ' f'valid list of comparison grids') depth_ranges = config.getexpression('climatologyMapOHCAnomaly', 'depthRanges', use_numpyfunc=True) mpas_field_name = 'deltaOHC' variable_list = ['timeMonthly_avg_activeTracers_temperature', 'timeMonthly_avg_layerThickness'] for min_depth, max_depth in depth_ranges: depth_range_string = \ f'{np.abs(min_depth):g}-{np.abs(max_depth):g}m' remap_climatology_subtask = RemapMpasOHCClimatology( mpas_climatology_task=mpas_climatology_task, ref_year_climatology_task=ref_year_climatology_task, parent_task=self, climatology_name=f'{field_name}_{depth_range_string}', variable_list=variable_list, comparison_grid_names=comparison_grid_names, seasons=seasons, min_depth=min_depth, max_depth=max_depth) self.add_subtask(remap_climatology_subtask) out_file_label = f'deltaOHC_{depth_range_string}' remap_observations_subtask = None if control_config is None: ref_title_label = None ref_field_name = None diff_title_label = 'Model - Observations' else: control_run_name = control_config.get('runs', 'mainRunName') ref_title_label = f'Control: {control_run_name}' ref_field_name = mpas_field_name diff_title_label = 'Main - Control' for comparison_grid_name in comparison_grid_names: for season in seasons: # make a new subtask for this season and comparison grid subtask_name = f'plot{season}_{comparison_grid_name}_{depth_range_string}' subtask = PlotClimatologyMapSubtask( self, season, comparison_grid_name, remap_climatology_subtask, remap_observations_subtask, controlConfig=control_config, subtaskName=subtask_name) subtask.set_plot_info( outFileLabel=out_file_label, fieldNameInTitle=f'$\\Delta$OHC over {depth_range_string}', mpasFieldName=mpas_field_name, refFieldName=ref_field_name, refTitleLabel=ref_title_label, diffTitleLabel=diff_title_label, unitsLabel=r'GJ m$^{-2}$', imageCaption=f'Anomaly in Ocean Heat Content over {depth_range_string}', galleryGroup='OHC Anomaly', groupSubtitle=None, groupLink='ohc_anom', galleryName=None) self.add_subtask(subtask)
def setup_and_check(self): """ Checks whether analysis is being performed only on the reference year, in which case the analysis will not be meaningful. Raises ------ ValueError: if attempting to analyze only the reference year """ # first, call setup_and_check from the base class (AnalysisTask), # which will perform some common setup, including storing: # self.runDirectory , self.historyDirectory, self.plotsDirectory, # self.namelist, self.runStreams, self.historyStreams, # self.calendar super().setup_and_check() start_year, end_year = self.mpas_climatology_task.get_start_and_end() ref_start_year, ref_end_year = \ self.ref_year_climatology_task.get_start_and_end() if (start_year == ref_start_year) and (end_year == ref_end_year): raise ValueError('OHC Anomaly is not meaningful and will not work ' 'when climatology and ref year are the same.')
class RemapMpasOHCClimatology(RemapMpasClimatologySubtask): """ A subtask for computing climatologies of ocean heat content from climatologies of temperature Attributes ---------- ref_year_climatology_task : mpas_analysis.shared.climatology.RefYearMpasClimatologyTask The task that produced the climatology from the first year to be remapped and then subtracted from the main climatology min_depth, max_depth : float The minimum and maximum depths for integration """ def __init__(self, mpas_climatology_task, ref_year_climatology_task, parent_task, climatology_name, variable_list, seasons, comparison_grid_names, min_depth, max_depth): """ Construct the analysis task and adds it as a subtask of the ``parent_task``. Parameters ---------- mpas_climatology_task : mpas_analysis.shared.climatology.MpasClimatologyTask The task that produced the climatology to be remapped ref_year_climatology_task : mpas_analysis.shared.climatology.RefYearMpasClimatologyTask The task that produced the climatology from the first year to be remapped and then subtracted from the main climatology parent_task : mpas_analysis.shared.AnalysisTask The parent task, used to get the ``taskName``, ``config`` and ``componentName`` climatology_name : str A name that describes the climatology (e.g. a short version of the important field(s) in the climatology) used to name the subdirectories for each stage of the climatology variable_list : list of str A list of variable names in ``timeSeriesStatsMonthly`` to be included in the climatologies seasons : list of str, optional A list of seasons (keys in ``shared.constants.monthDictionary``) to be computed or ['none'] (not ``None``) if only monthly climatologies are needed. comparison_grid_names : list of {'latlon', 'antarctic'} The name(s) of the comparison grid to use for remapping. min_depth, max_depth : float The minimum and maximum depths for integration """ depth_range_string = f'{np.abs(min_depth):g}-{np.abs(max_depth):g}m' subtask_name = f'remapMpasClimatology_{depth_range_string}' # call the constructor from the base class # (RemapMpasClimatologySubtask) super().__init__( mpas_climatology_task, parent_task, climatology_name, variable_list, seasons, comparison_grid_names, subtaskName=subtask_name) self.ref_year_climatology_task = ref_year_climatology_task self.run_after(ref_year_climatology_task) self.min_depth = min_depth self.max_depth = max_depth def setup_and_check(self): """ Perform steps to set up the analysis and check for errors in the setup. """ # first, call setup_and_check from the base class # (RemapMpasClimatologySubtask), which will set up remappers and add # variables to mpas_climatology_task super().setup_and_check() # don't add the variables and seasons to mpas_climatology_task until # we're sure this subtask is supposed to run self.ref_year_climatology_task.add_variables(self.variableList, self.seasons) def customize_masked_climatology(self, climatology, season): """ Compute the ocean heat content (OHC) anomaly from the temperature and layer thickness fields. Parameters ---------- climatology : xarray.Dataset the climatology data set season : str The name of the season to be masked Returns ------- climatology : xarray.Dataset the modified climatology data set """ ohc = self._compute_ohc(climatology) ref_file_name = self.ref_year_climatology_task.get_file_name(season) ref_year_climo = xr.open_dataset(ref_file_name) if 'Time' in ref_year_climo.dims: ref_year_climo = ref_year_climo.isel(Time=0) ref_ohc = self._compute_ohc(ref_year_climo) climatology['deltaOHC'] = ohc - ref_ohc climatology.deltaOHC.attrs['units'] = 'GJ m^-2' start_year = self.ref_year_climatology_task.startYear climatology.deltaOHC.attrs['description'] = \ f'Anomaly from year {start_year} in ocean heat content' climatology = climatology.drop_vars(self.variableList) return climatology def _compute_ohc(self, climatology): """ Compute the OHC from the temperature and layer thicknesses in a given climatology data sets. """ ds_restart = xr.open_dataset(self.restartFileName) ds_restart = ds_restart.isel(Time=0) # specific heat [J/(kg*degC)] cp = self.namelist.getfloat('config_specific_heat_sea_water') # [kg/m3] rho = self.namelist.getfloat('config_density0') units_scale_factor = 1e-9 n_vert_levels = ds_restart.sizes['nVertLevels'] z_mid = compute_zmid(ds_restart.bottomDepth, ds_restart.maxLevelCell-1, ds_restart.layerThickness) vert_index = xr.DataArray.from_dict( {'dims': ('nVertLevels',), 'data': np.arange(n_vert_levels)}) temperature = climatology['timeMonthly_avg_activeTracers_temperature'] layer_thickness = climatology['timeMonthly_avg_layerThickness'] masks = [vert_index < ds_restart.maxLevelCell, z_mid <= self.min_depth, z_mid >= self.max_depth] for mask in masks: temperature = temperature.where(mask) layer_thickness = layer_thickness.where(mask) ohc = units_scale_factor * rho * cp * layer_thickness * temperature ohc = ohc.sum(dim='nVertLevels') return ohc