import numpy as np
import xarray
import matplotlib.pyplot as plt
import cmocean
from compass.step import Step
from compass.ocean.rpe import compute_rpe
[docs]class Analysis(Step):
"""
A step for plotting the results of a series of RPE runs in the baroclinic
channel test group
Attributes
----------
resolution : str
The resolution of the test case
nus : list of float
A list of viscosities
"""
[docs] def __init__(self, test_case, resolution, nus):
"""
Create the step
Parameters
----------
test_case : compass.TestCase
The test case this step belongs to
resolution : str
The resolution of the test case
nus : list of float
A list of viscosities
"""
super().__init__(test_case=test_case, name='analysis')
self.resolution = resolution
self.nus = nus
self.add_input_file(
filename='initial_state.nc',
target='../initial_state/ocean.nc')
for index, nu in enumerate(nus):
self.add_input_file(
filename='output_{}.nc'.format(index+1),
target='../rpe_test_{}_nu_{}/output.nc'.format(index+1, nu))
self.add_output_file(
filename='sections_baroclinic_channel_{}.png'.format(resolution))
self.add_output_file(filename='rpe_t.png')
[docs] def run(self):
"""
Run this step of the test case
"""
section = self.config['baroclinic_channel']
nx = section.getint('nx')
ny = section.getint('ny')
rpe = compute_rpe()
_plot(nx, ny, self.outputs[0], self.nus, rpe)
def _plot(nx, ny, filename, nus, rpe):
"""
Plot section of the baroclinic channel at different viscosities
Parameters
----------
nx : int
The number of cells in the x direction
ny : int
The number of cells in the y direction (before culling)
filename : str
The output file name
nus : list of float
The viscosity values
rpe : float, dim len(nu) x len(time)
"""
plt.switch_backend('Agg')
nanosecondsPerDay = 8.64e13
num_files = len(nus)
time = 20
ds = xarray.open_dataset('output_1.nc')
times = ds.daysSinceStartOfSim.values
times = times.tolist()
times = np.divide(times, nanosecondsPerDay)
fig = plt.figure()
for i in range(num_files):
rpe_norm = np.divide((rpe[i, :]-rpe[i, 0]), rpe[i, 0])
plt.plot(times, rpe_norm,
label="$\\nu_h=${}".format(nus[i]))
plt.xlabel('Time, days')
plt.ylabel('RPE-RPE(0)/RPE(0)')
plt.legend()
plt.savefig('rpe_t.png')
plt.close(fig)
fig, axs = plt.subplots(1, num_files, figsize=(
2.1 * num_files, 5.0), constrained_layout=True)
for iCol in range(num_files):
ds = xarray.open_dataset('output_{}.nc'.format(iCol + 1))
times = ds.daysSinceStartOfSim.values
times = np.divide(times.tolist(), nanosecondsPerDay)
tidx = np.argmin(np.abs(times-time))
var = ds.temperature.values
var1 = np.reshape(var[tidx, :, 0], [ny, nx])
# flip in y-dir
var = np.flipud(var1)
# Every other row in y needs to average two neighbors in x on
# planar hex mesh
var_avg = var
for j in range(0, ny, 2):
for i in range(1, nx - 2):
var_avg[j, i] = (var[j, i + 1] + var[j, i]) / 2.0
ax = axs[iCol]
dis = ax.imshow(
var_avg,
extent=[0, 160, 0, 500],
cmap='cmo.thermal',
vmin=11.8,
vmax=13.0)
ax.set_title("day {}, $\\nu_h=${}".format(
int(times[tidx]), nus[iCol]))
ax.set_xticks(np.arange(0, 161, step=40))
ax.set_yticks(np.arange(0, 501, step=50))
ax.set_xlabel('x, km')
if iCol == 0:
ax.set_ylabel('y, km')
if iCol == num_files - 1:
fig.colorbar(dis, ax=axs[num_files - 1], aspect=40)
plt.savefig(filename)