Source code for compass.ocean.tests.hurricane.init.create_pointstats_file

from compass.step import Step

import netCDF4
import numpy as np
from scipy import spatial
import matplotlib.pyplot as plt


[docs]class CreatePointstatsFile(Step): """ A step for creating the input file for the pointwiseStats analysis member Attributes ---------- mesh_file : str Name of mesh file station_files : str Files containing location of observation stations pointstats_file : str Name of output file contiaining pointstats information """
[docs] def __init__(self, test_case, mesh, storm): """ Create the step Parameters ---------- test_case : compass.ocean.tests.hurricane.init.Init The test case this step belongs to mesh : compass.ocean.tests.global_ocean.mesh.Mesh The test case that creates the mesh used by this test case storm : str The name of the storm used """ super().__init__(test_case=test_case, name='pointstats', cores=1, min_cores=1, threads=1) self.mesh_file = 'mesh.nc' if storm == 'sandy': self.station_files = ['NOAA-COOPS_stations.txt', 'USGS_stations.txt'] self.pointstats_file = 'points.nc' mesh_path = mesh.mesh_step.path self.add_input_file( filename=self.mesh_file, work_dir_target=f'{mesh_path}/culled_mesh.nc') for file in self.station_files: self.add_input_file( filename=f'{file}', target=f'{storm}_stations/{file}', database='hurricane') self.add_output_file(filename=self.pointstats_file)
[docs] def create_pointstats_file(self, mesh_file, stations_files): """ Find grid points nearest to observation stations and create pointwiseStats file """ plt.switch_backend('agg') # Read in station locations lon = [] lat = [] for stations_file in stations_files: f = open(stations_file, 'r') lines = f.read().splitlines() for line in lines: lon.append(line.split()[0]) lat.append(line.split()[1]) # Convert station locations lon = np.radians(np.array(lon, dtype=np.float32)) lon_idx, = np.where(lon < 0.0) lon[lon_idx] = lon[lon_idx] + 2.0*np.pi lat = np.radians(np.array(lat, dtype=np.float32)) stations = np.vstack((lon, lat)).T # Read in cell center coordinates mesh_nc = netCDF4.Dataset(mesh_file, 'r') lonCell = np.array(mesh_nc.variables["lonCell"][:]) latCell = np.array(mesh_nc.variables["latCell"][:]) meshCells = np.vstack((lonCell, latCell)).T # Find nearest cell center to each station tree = spatial.KDTree(meshCells) d, idx = tree.query(stations) # Plot the station locations and nearest cell centers plt.figure() plt.plot(lonCell[idx], latCell[idx], '.') plt.plot(lon, lat, '.') plt.savefig('station_locations.png') # Open netCDF file for writing data_nc = netCDF4.Dataset(self.pointstats_file, 'w', format='NETCDF3_64BIT_OFFSET') # Find dimesions npts = idx.shape[0] ncells = lonCell.shape[0] # Declare dimensions data_nc.createDimension('nCells', ncells) data_nc.createDimension('StrLen', 64) data_nc.createDimension('nPoints', npts) # Declear variables npts = data_nc.dimensions['nPoints'].name pnt_ids = data_nc.createVariable('pointCellGlobalID', np.int32, (npts,)) # Set variables pnt_ids[:] = idx[:] + 1 data_nc.close()
[docs] def run(self): """ Run this step of the testcase """ self.create_pointstats_file(self.mesh_file, self.station_files)