Interpolation
Previously, various tools in this package used scipy
for interpolation.
However, the interpolation routines in scipy
are not well suited to
interpolation from regular grids to MPAS meshes—they are slow and very memory
intensive, particularly for large meshes.
For bilinear interpolation from a tensor lon/lat grid to an MPAS mesh, it will
be faster to use the function
mpas_tools.mesh.interpolation.interp_bilin()
Here is an example where we define cell width for an EC mesh (see
Defining an Eddy-closure Mesh), read in longitude and latitude from an MPAS mesh, and
interpolate the cell widths to cell centers on the MPAS mesh.
import numpy as np
import netCDF4 as nc4
from mpas_tools.mesh.interpolation import interp_bilin
dlon = 1.
dlat = dlon
earth_radius = constants['SHR_CONST_REARTH']
nlon = int(360./dlon) + 1
nlat = int(180./dlat) + 1
lon = np.linspace(-180., 180., nlon)
lat = np.linspace(-90., 90., nlat)
cellWidth = mdt.EC_CellWidthVsLat(lat)
# broadcast cellWidth to 2D
_, cellWidth = np.meshgrid(lon, cellWidthVsLat)
ds = nc4.Dataset('base_mesh.nc', 'r+')
lonCell = ds.variables['lonCell'][:]
latCell = ds.variables['latCell'][:]
lonCell = np.mod(np.rad2deg(lonCell) + 180., 360.) - 180.
latCell = np.rad2deg(latCell)
cellWidthOnMpas = interp_bilin(lon, lat, cellWidth, lonCell, latCell)