Source code for mpas_analysis.sea_ice.time_series

# This software is open source software available under the BSD-3 license.
#
# Copyright (c) 2019 Triad National Security, LLC. All rights reserved.
# Copyright (c) 2019 Lawrence Livermore National Security, LLC. All rights
# reserved.
# Copyright (c) 2019 UT-Battelle, LLC. All rights reserved.
#
# Additional copyright and license information can be found in the LICENSE file
# distributed with this code, or at
# https://raw.githubusercontent.com/MPAS-Dev/MPAS-Analysis/master/LICENSE

from __future__ import absolute_import, division, print_function, \
    unicode_literals

import xarray as xr

from mpas_analysis.shared import AnalysisTask

from mpas_analysis.shared.plot import timeseries_analysis_plot, \
    timeseries_analysis_plot_polar, savefig

from mpas_analysis.shared.io.utility import build_config_full_path, \
    check_path_exists, make_directories, build_obs_path

from mpas_analysis.shared.timekeeping.utility import date_to_days, \
    days_to_datetime, datetime_to_days, get_simulation_start_time
from mpas_analysis.shared.timekeeping.MpasRelativeDelta import \
    MpasRelativeDelta

from mpas_analysis.shared.time_series import combine_time_series_with_ncrcat
from mpas_analysis.shared.io import open_mpas_dataset, write_netcdf
from mpas_analysis.shared.mpas_xarray.mpas_xarray import subset_variables

from mpas_analysis.shared.html import write_image_xml


[docs]class TimeSeriesSeaIce(AnalysisTask): """ Performs analysis of time series of sea-ice properties. Attributes ---------- mpasTimeSeriesTask : ``MpasTimeSeriesTask`` The task that extracts the time series from MPAS monthly output controlConfig : ``MpasAnalysisConfigParser`` Configuration options for a control run (if any) """ # Authors # ------- # Xylar Asay-Davis, Milena Veneziani
[docs] def __init__(self, config, mpasTimeSeriesTask, controlConfig=None): # {{{ """ Construct the analysis task. Parameters ---------- config : ``MpasAnalysisConfigParser`` Configuration options mpasTimeSeriesTask : ``MpasTimeSeriesTask`` The task that extracts the time series from MPAS monthly output controlConfig : ``MpasAnalysisConfigParser``, optional Configuration options for a control run (if any) """ # Authors # ------- # Xylar Asay-Davis # first, call the constructor from the base class (AnalysisTask) super(TimeSeriesSeaIce, self).__init__( config=config, taskName='timeSeriesSeaIceAreaVol', componentName='seaIce', tags=['timeSeries', 'publicObs', 'arctic', 'antarctic']) self.mpasTimeSeriesTask = mpasTimeSeriesTask self.controlConfig = controlConfig self.run_after(mpasTimeSeriesTask)
# }}} def setup_and_check(self): # {{{ """ Perform steps to set up the analysis and check for errors in the setup. Raises ------ OSError If files are not present """ # Authors # ------- # Xylar Asay-Davis # first, call setup_and_check from the base class (AnalysisTask), # which will perform some common setup, including storing: # self.runDirectory , self.historyDirectory, self.plotsDirectory, # self.namelist, self.runStreams, self.historyStreams, # self.calendar super(TimeSeriesSeaIce, self).setup_and_check() config = self.config self.startDate = self.config.get('timeSeries', 'startDate') self.endDate = self.config.get('timeSeries', 'endDate') self.variableList = ['timeMonthly_avg_iceAreaCell', 'timeMonthly_avg_iceVolumeCell'] self.mpasTimeSeriesTask.add_variables(variableList=self.variableList) self.inputFile = self.mpasTimeSeriesTask.outputFile if config.get('runs', 'preprocessedReferenceRunName') != 'None': check_path_exists(config.get('seaIcePreprocessedReference', 'baseDirectory')) # get a list of timeSeriesStatsMonthly output files from the streams # file, reading only those that are between the start and end dates streamName = 'timeSeriesStatsMonthlyOutput' self.startDate = config.get('timeSeries', 'startDate') self.endDate = config.get('timeSeries', 'endDate') self.inputFiles = \ self.historyStreams.readpath(streamName, startDate=self.startDate, endDate=self.endDate, calendar=self.calendar) if len(self.inputFiles) == 0: raise IOError('No files were found in stream {} between {} and ' '{}.'.format(streamName, self.startDate, self.endDate)) self.simulationStartTime = get_simulation_start_time(self.runStreams) try: self.restartFileName = self.runStreams.readpath('restart')[0] except ValueError: raise IOError('No MPAS-SeaIce restart file found: need at least ' 'one restart file to perform remapping of ' 'climatologies.') # these are redundant for now. Later cleanup is needed where these # file names are reused in run() self.xmlFileNames = [] polarPlot = config.getboolean('timeSeriesSeaIceAreaVol', 'polarPlot') mainRunName = config.get('runs', 'mainRunName') preprocessedReferenceRunName = \ config.get('runs', 'preprocessedReferenceRunName') compareWithObservations = config.getboolean('timeSeriesSeaIceAreaVol', 'compareWithObservations') polarXMLFileNames = [] if (not compareWithObservations and preprocessedReferenceRunName == 'None'): for variableName in ['iceArea', 'iceVolume']: filePrefix = '{}.{}'.format(mainRunName, variableName) self.xmlFileNames.append('{}/{}.xml'.format( self.plotsDirectory, filePrefix)) polarXMLFileNames.append('{}/{}_polar.xml'.format( self.plotsDirectory, filePrefix)) else: for hemisphere in ['NH', 'SH']: for variableName in ['iceArea', 'iceVolume']: filePrefix = '{}{}_{}'.format(variableName, hemisphere, mainRunName) self.xmlFileNames.append('{}/{}.xml'.format( self.plotsDirectory, filePrefix)) polarXMLFileNames.append('{}/{}_polar.xml'.format( self.plotsDirectory, filePrefix)) if polarPlot: self.xmlFileNames.extend(polarXMLFileNames) return # }}} def run_task(self): # {{{ """ Performs analysis of time series of sea-ice properties. """ # Authors # ------- # Xylar Asay-Davis, Milena Veneziani self.logger.info("\nPlotting sea-ice area and volume time series...") config = self.config calendar = self.calendar sectionName = self.taskName plotTitles = {'iceArea': 'Sea-ice area', 'iceVolume': 'Sea-ice volume', 'iceThickness': 'Sea-ice mean thickness'} units = {'iceArea': '[km$^2$]', 'iceVolume': '[10$^3$ km$^3$]', 'iceThickness': '[m]'} obsFileNames = { 'iceArea': {'NH': build_obs_path( config, 'seaIce', relativePathOption='areaNH', relativePathSection=sectionName), 'SH': build_obs_path( config, 'seaIce', relativePathOption='areaSH', relativePathSection=sectionName)}, 'iceVolume': {'NH': build_obs_path( config, 'seaIce', relativePathOption='volNH', relativePathSection=sectionName), 'SH': build_obs_path( config, 'seaIce', relativePathOption='volSH', relativePathSection=sectionName)}} # Some plotting rules titleFontSize = config.get('timeSeriesSeaIceAreaVol', 'titleFontSize') mainRunName = config.get('runs', 'mainRunName') preprocessedReferenceRunName = \ config.get('runs', 'preprocessedReferenceRunName') preprocessedReferenceDirectory = \ config.get('seaIcePreprocessedReference', 'baseDirectory') compareWithObservations = config.getboolean('timeSeriesSeaIceAreaVol', 'compareWithObservations') movingAveragePoints = config.getint('timeSeriesSeaIceAreaVol', 'movingAveragePoints') polarPlot = config.getboolean('timeSeriesSeaIceAreaVol', 'polarPlot') outputDirectory = build_config_full_path(config, 'output', 'timeseriesSubdirectory') make_directories(outputDirectory) self.logger.info(' Load sea-ice data...') # Load mesh dsTimeSeries = self._compute_area_vol() yearStart = days_to_datetime(dsTimeSeries['NH'].Time.min(), calendar=calendar).year yearEnd = days_to_datetime(dsTimeSeries['NH'].Time.max(), calendar=calendar).year timeStart = date_to_days(year=yearStart, month=1, day=1, calendar=calendar) timeEnd = date_to_days(year=yearEnd, month=12, day=31, calendar=calendar) if preprocessedReferenceRunName != 'None': # determine if we're beyond the end of the preprocessed data # (and go ahead and cache the data set while we're checking) outFolder = '{}/preprocessed'.format(outputDirectory) make_directories(outFolder) inFilesPreprocessed = '{}/icevol.{}.year*.nc'.format( preprocessedReferenceDirectory, preprocessedReferenceRunName) outFileName = '{}/iceVolume.nc'.format(outFolder) combine_time_series_with_ncrcat(inFilesPreprocessed, outFileName, logger=self.logger) dsPreprocessed = open_mpas_dataset(fileName=outFileName, calendar=calendar, timeVariableNames='xtime') preprocessedYearEnd = days_to_datetime(dsPreprocessed.Time.max(), calendar=calendar).year if yearStart <= preprocessedYearEnd: dsPreprocessedTimeSlice = \ dsPreprocessed.sel(Time=slice(timeStart, timeEnd)) else: self.logger.warning('Preprocessed time series ends before the ' 'timeSeries startYear and will not be ' 'plotted.') preprocessedReferenceRunName = 'None' if self.controlConfig is not None: dsTimeSeriesRef = {} baseDirectory = build_config_full_path( self.controlConfig, 'output', 'timeSeriesSubdirectory') controlRunName = self.controlConfig.get('runs', 'mainRunName') for hemisphere in ['NH', 'SH']: inFileName = '{}/seaIceAreaVol{}.nc'.format(baseDirectory, hemisphere) dsTimeSeriesRef[hemisphere] = xr.open_dataset(inFileName) norm = {'iceArea': 1e-6, # m^2 to km^2 'iceVolume': 1e-12, # m^3 to 10^3 km^3 'iceThickness': 1.} xLabel = 'Time [years]' galleryGroup = 'Time Series' groupLink = 'timeseries' obs = {} preprocessed = {} figureNameStd = {} figureNamePolar = {} title = {} plotVars = {} obsLegend = {} plotVarsRef = {} for hemisphere in ['NH', 'SH']: self.logger.info(' Make {} plots...'.format(hemisphere)) for variableName in ['iceArea', 'iceVolume']: key = (hemisphere, variableName) # apply the norm to each variable plotVars[key] = (norm[variableName] * dsTimeSeries[hemisphere][variableName]) if self.controlConfig is not None: plotVarsRef[key] = norm[variableName] * \ dsTimeSeriesRef[hemisphere][variableName] prefix = '{}/{}{}_{}'.format(self.plotsDirectory, variableName, hemisphere, mainRunName) figureNameStd[key] = '{}.png'.format(prefix) figureNamePolar[key] = '{}_polar.png'.format(prefix) title[key] = '{} ({})'.format(plotTitles[variableName], hemisphere) if compareWithObservations: key = (hemisphere, 'iceArea') obsLegend[key] = 'SSM/I observations, annual cycle ' if hemisphere == 'NH': key = (hemisphere, 'iceVolume') obsLegend[key] = 'PIOMAS, annual cycle (blue)' if preprocessedReferenceRunName != 'None': for variableName in ['iceArea', 'iceVolume']: key = (hemisphere, variableName) if compareWithObservations: outFolder = '{}/obs'.format(outputDirectory) make_directories(outFolder) outFileName = '{}/iceArea{}.nc'.format(outFolder, hemisphere) combine_time_series_with_ncrcat( obsFileNames['iceArea'][hemisphere], outFileName, logger=self.logger) dsObs = open_mpas_dataset(fileName=outFileName, calendar=calendar, timeVariableNames='xtime') key = (hemisphere, 'iceArea') obs[key] = self._replicate_cycle(plotVars[key], dsObs.IceArea, calendar) key = (hemisphere, 'iceVolume') if hemisphere == 'NH': outFileName = '{}/iceVolume{}.nc'.format(outFolder, hemisphere) combine_time_series_with_ncrcat( obsFileNames['iceVolume'][hemisphere], outFileName, logger=self.logger) dsObs = open_mpas_dataset(fileName=outFileName, calendar=calendar, timeVariableNames='xtime') obs[key] = self._replicate_cycle(plotVars[key], dsObs.IceVol, calendar) else: obs[key] = None if preprocessedReferenceRunName != 'None': outFolder = '{}/preprocessed'.format(outputDirectory) inFilesPreprocessed = '{}/icearea.{}.year*.nc'.format( preprocessedReferenceDirectory, preprocessedReferenceRunName) outFileName = '{}/iceArea.nc'.format(outFolder) combine_time_series_with_ncrcat(inFilesPreprocessed, outFileName, logger=self.logger) dsPreprocessed = open_mpas_dataset(fileName=outFileName, calendar=calendar, timeVariableNames='xtime') dsPreprocessedTimeSlice = dsPreprocessed.sel( Time=slice(timeStart, timeEnd)) key = (hemisphere, 'iceArea') preprocessed[key] = dsPreprocessedTimeSlice[ 'icearea_{}'.format(hemisphere.lower())] inFilesPreprocessed = '{}/icevol.{}.year*.nc'.format( preprocessedReferenceDirectory, preprocessedReferenceRunName) outFileName = '{}/iceVolume.nc'.format(outFolder) combine_time_series_with_ncrcat(inFilesPreprocessed, outFileName, logger=self.logger) dsPreprocessed = open_mpas_dataset(fileName=outFileName, calendar=calendar, timeVariableNames='xtime') dsPreprocessedTimeSlice = dsPreprocessed.sel( Time=slice(timeStart, timeEnd)) key = (hemisphere, 'iceVolume') preprocessed[key] = dsPreprocessedTimeSlice[ 'icevolume_{}'.format(hemisphere.lower())] for variableName in ['iceArea', 'iceVolume']: key = (hemisphere, variableName) dsvalues = [plotVars[key]] legendText = [mainRunName] lineColors = ['k'] lineWidths = [3] if compareWithObservations and key in obsLegend.keys(): dsvalues.append(obs[key]) legendText.append(obsLegend[key]) lineColors.append('b') lineWidths.append(1.2) if preprocessedReferenceRunName != 'None': dsvalues.append(preprocessed[key]) legendText.append(preprocessedReferenceRunName) lineColors.append('purple') lineWidths.append(1.2) if self.controlConfig is not None: dsvalues.append(plotVarsRef[key]) legendText.append(controlRunName) lineColors.append('r') lineWidths.append(1.2) if config.has_option(sectionName, 'firstYearXTicks'): firstYearXTicks = config.getint(sectionName, 'firstYearXTicks') else: firstYearXTicks = None if config.has_option(sectionName, 'yearStrideXTicks'): yearStrideXTicks = config.getint(sectionName, 'yearStrideXTicks') else: yearStrideXTicks = None # separate plots for nothern and southern hemispheres timeseries_analysis_plot(config, dsvalues, movingAveragePoints, title[key], xLabel, units[variableName], calendar=calendar, lineColors=lineColors, lineWidths=lineWidths, legendText=legendText, titleFontSize=titleFontSize, firstYearXTicks=firstYearXTicks, yearStrideXTicks=yearStrideXTicks) savefig(figureNameStd[key]) filePrefix = '{}{}_{}'.format(variableName, hemisphere, mainRunName) thumbnailDescription = '{} {}'.format( hemisphere, plotTitles[variableName]) caption = 'Running mean of {}'.format( thumbnailDescription) write_image_xml( config, filePrefix, componentName='Sea Ice', componentSubdirectory='sea_ice', galleryGroup=galleryGroup, groupLink=groupLink, thumbnailDescription=thumbnailDescription, imageDescription=caption, imageCaption=caption) if (polarPlot): timeseries_analysis_plot_polar( config, dsvalues, movingAveragePoints, title[key], lineColors=lineColors, lineWidths=lineWidths, legendText=legendText, titleFontSize=titleFontSize) savefig(figureNamePolar[key]) filePrefix = '{}{}_{}_polar'.format(variableName, hemisphere, mainRunName) write_image_xml( config, filePrefix, componentName='Sea Ice', componentSubdirectory='sea_ice', galleryGroup=galleryGroup, groupLink=groupLink, thumbnailDescription=thumbnailDescription, imageDescription=caption, imageCaption=caption) # }}} def _replicate_cycle(self, ds, dsToReplicate, calendar): # {{{ """ Replicates a periodic time series `dsToReplicate` to cover the timeframe of the dataset `ds`. Parameters ---------- ds : dataset used to find the start and end time of the replicated cycle dsToReplicate : dataset to replicate. The period of the cycle is the length of dsToReplicate plus the time between the first two time values (typically one year total). calendar : {'gregorian', 'gregorian_noleap'} The name of one of the calendars supported by MPAS cores Returns: -------- dsShift : a cyclicly repeated version of `dsToReplicte` covering the range of time of `ds`. """ # Authors # ------- # Xylar Asay-Davis, Milena Veneziani dsStartTime = days_to_datetime(ds.Time.min(), calendar=calendar) dsEndTime = days_to_datetime(ds.Time.max(), calendar=calendar) repStartTime = days_to_datetime(dsToReplicate.Time.min(), calendar=calendar) repEndTime = days_to_datetime(dsToReplicate.Time.max(), calendar=calendar) repSecondTime = days_to_datetime(dsToReplicate.Time.isel(Time=1), calendar=calendar) period = (MpasRelativeDelta(repEndTime, repStartTime) + MpasRelativeDelta(repSecondTime, repStartTime)) startIndex = 0 while(dsStartTime > repStartTime + (startIndex + 1) * period): startIndex += 1 endIndex = 0 while(dsEndTime > repEndTime + endIndex * period): endIndex += 1 dsShift = dsToReplicate.copy() times = days_to_datetime(dsShift.Time, calendar=calendar) dsShift.coords['Time'] = ('Time', datetime_to_days(times + startIndex * period, calendar=calendar)) # replicate cycle: for cycleIndex in range(startIndex, endIndex): dsNew = dsToReplicate.copy() dsNew.coords['Time'] = \ ('Time', datetime_to_days(times + (cycleIndex + 1) * period, calendar=calendar)) dsShift = xr.concat([dsShift, dsNew], dim='Time') # clip dsShift to the range of ds dsStartTime = dsShift.Time.sel(Time=ds.Time.min(), method=str('nearest')).values dsEndTime = dsShift.Time.sel(Time=ds.Time.max(), method=str('nearest')).values dsShift = dsShift.sel(Time=slice(dsStartTime, dsEndTime)) return dsShift # }}} def _compute_area_vol(self): # {{{ ''' Compute part of the time series of sea ice volume and area, given time indices to process. ''' outFileNames = {} for hemisphere in ['NH', 'SH']: baseDirectory = build_config_full_path( self.config, 'output', 'timeSeriesSubdirectory') make_directories(baseDirectory) outFileName = '{}/seaIceAreaVol{}.nc'.format(baseDirectory, hemisphere) outFileNames[hemisphere] = outFileName dsTimeSeries = {} dsMesh = xr.open_dataset(self.restartFileName) dsMesh = subset_variables(dsMesh, variableList=['latCell', 'areaCell']) # Load data ds = open_mpas_dataset( fileName=self.inputFile, calendar=self.calendar, variableList=self.variableList, startDate=self.startDate, endDate=self.endDate) for hemisphere in ['NH', 'SH']: if hemisphere == 'NH': mask = dsMesh.latCell > 0 else: mask = dsMesh.latCell < 0 dsAreaSum = (ds.where(mask) * dsMesh.areaCell).sum('nCells') dsAreaSum = dsAreaSum.rename( {'timeMonthly_avg_iceAreaCell': 'iceArea', 'timeMonthly_avg_iceVolumeCell': 'iceVolume'}) dsAreaSum['iceThickness'] = (dsAreaSum.iceVolume / dsMesh.areaCell.sum('nCells')) dsAreaSum['iceArea'].attrs['units'] = 'm$^2$' dsAreaSum['iceArea'].attrs['description'] = \ 'Total {} sea ice area'.format(hemisphere) dsAreaSum['iceVolume'].attrs['units'] = 'm$^3$' dsAreaSum['iceVolume'].attrs['description'] = \ 'Total {} sea ice volume'.format(hemisphere) dsAreaSum['iceThickness'].attrs['units'] = 'm' dsAreaSum['iceThickness'].attrs['description'] = \ 'Mean {} sea ice volume'.format(hemisphere) dsTimeSeries[hemisphere] = dsAreaSum write_netcdf(dsAreaSum, outFileNames[hemisphere]) return dsTimeSeries # }}}
# vim: foldmethod=marker ai ts=4 sts=4 et sw=4 ft=python