# This software is open source software available under the BSD-3 license.
#
# Copyright (c) 2020 Triad National Security, LLC. All rights reserved.
# Copyright (c) 2020 Lawrence Livermore National Security, LLC. All rights
# reserved.
# Copyright (c) 2020 UT-Battelle, LLC. All rights reserved.
#
# Additional copyright and license information can be found in the LICENSE file
# distributed with this code, or at
# https://raw.githubusercontent.com/MPAS-Dev/MPAS-Analysis/master/LICENSE
"""
Functions for plotting time series (and comparing with reference data sets)
"""
# Authors
# -------
# Xylar Asay-Davis, Milena Veneziani, Luke Van Roekel, Greg Streletz
from __future__ import absolute_import, division, print_function, \
unicode_literals
import matplotlib.pyplot as plt
import xarray as xr
import pandas as pd
import numpy as np
from mpas_analysis.shared.timekeeping.utility import date_to_days
from mpas_analysis.shared.constants import constants
from mpas_analysis.shared.plot.ticks import plot_xtick_format
[docs]def timeseries_analysis_plot(config, dsvalues, calendar, title, xlabel, ylabel,
movingAveragePoints=None, lineColors=None,
lineStyles=None, markers=None, lineWidths=None,
legendText=None, maxPoints=None,
titleFontSize=None, figsize=(15, 6), dpi=None,
firstYearXTicks=None, yearStrideXTicks=None,
maxXTicks=20, obsMean=None, obsUncertainty=None,
obsLegend=None, legendLocation='lower left'):
"""
Plots the list of time series data sets.
Parameters
----------
config : instance of ConfigParser
the configuration, containing a [plot] section with options that
control plotting
dsvalues : list of xarray DataSets
the data set(s) to be plotted
title : str
the title of the plot
xlabel, ylabel : str
axis labels
calendar : str
the calendar to use for formatting the time axis
movingAveragePoints : int, optional
the number of time points over which to perform a moving average
lineColors, lineStyles, markers, legendText : list of str, optional
control line color, style, marker, and corresponding legend
text. Default is black, solid line with no marker, and no legend.
lineWidths : list of float, optional
control line width. Default is 1.0.
maxPoints : list of {None, int}, optional
the approximate maximum number of time points to use in a time series.
This can be helpful for reducing the number of symbols plotted if
plotting with markers. Otherwise the markers become indistinguishable
from each other.
titleFontSize : int, optional
the size of the title font
figsize : tuple of float, optional
the size of the figure in inches
dpi : int, optional
the number of dots per inch of the figure, taken from section ``plot``
option ``dpi`` in the config file by default
firstYearXTicks : int, optional
The year of the first tick on the x axis. By default, the first time
entry is the first tick.
yearStrideXTicks : int, optional
The number of years between x ticks. By default, the stride is chosen
automatically to have ``maxXTicks`` tick marks or fewer.
maxXTicks : int, optional
the maximum number of tick marks that will be allowed along the x axis.
This may need to be adjusted depending on the figure size and aspect
ratio.
obsMean, obsUncertainty : list of float, optional
Mean values and uncertainties for observations to be plotted as error
bars. The two lists must have the same number of elements.
obsLegend : list of str, optional
The label in the legend for each element in ``obsMean`` (and
``obsUncertainty``)
legendLocation : str, optional
The location of the legend (see ``pyplot.legend()`` for details)
Returns
-------
fig : ``matplotlib.figure.Figure``
The resulting figure
"""
# Authors
# -------
# Xylar Asay-Davis, Milena Veneziani, Stephen Price
if dpi is None:
dpi = config.getint('plot', 'dpi')
fig = plt.figure(figsize=figsize, dpi=dpi)
minDays = []
maxDays = []
labelCount = 0
for dsIndex in range(len(dsvalues)):
dsvalue = dsvalues[dsIndex]
if dsvalue is None:
continue
if movingAveragePoints == 1 or movingAveragePoints is None:
mean = dsvalue
else:
mean = pd.Series.rolling(dsvalue.to_pandas(), movingAveragePoints,
center=True).mean()
mean = xr.DataArray.from_series(mean)
minDays.append(mean.Time.min())
maxDays.append(mean.Time.max())
if maxPoints is not None and maxPoints[dsIndex] is not None:
nTime = mean.sizes['Time']
if maxPoints[dsIndex] < nTime:
stride = int(round(nTime / float(maxPoints[dsIndex])))
mean = mean.isel(Time=slice(0, None, stride))
if legendText is None:
label = None
else:
label = legendText[dsIndex]
labelCount += 1
if lineColors is None:
color = 'k'
else:
color = lineColors[dsIndex]
if lineStyles is None:
linestyle = '-'
else:
linestyle = lineStyles[dsIndex]
if markers is None:
marker = None
else:
marker = markers[dsIndex]
if lineWidths is None:
linewidth = 1.
else:
linewidth = lineWidths[dsIndex]
plt.plot(mean['Time'].values, mean.values, color=color,
linestyle=linestyle, marker=marker, linewidth=linewidth,
label=label)
if obsMean is not None:
obsCount = len(obsMean)
assert(len(obsUncertainty) == obsCount)
# space the observations along the time line, leaving gaps at either
# end
start = np.amin(minDays)
end = np.amax(maxDays)
obsTimes = np.linspace(start, end, obsCount + 2)[1:-1]
obsSymbols = ['o', '^', 's', 'D', '*']
obsColors = ['b', 'g', 'c', 'm', 'r']
for iObs in range(obsCount):
if obsMean[iObs] is not None:
symbol = obsSymbols[np.mod(iObs, len(obsSymbols))]
color = obsColors[np.mod(iObs, len(obsColors))]
fmt = '{}{}'.format(color, symbol)
plt.errorbar(obsTimes[iObs],
obsMean[iObs],
yerr=obsUncertainty[iObs],
fmt=fmt,
ecolor=color,
capsize=0,
label=obsLegend[iObs])
# plot a box around the error bar to make it more visible
boxHalfWidth = 0.01 * (end - start)
boxHalfHeight = obsUncertainty[iObs]
boxX = obsTimes[iObs] + \
boxHalfWidth * np.array([-1, 1, 1, -1, -1])
boxY = obsMean[iObs] + \
boxHalfHeight * np.array([-1, -1, 1, 1, -1])
plt.plot(boxX, boxY, '{}-'.format(color), linewidth=3)
labelCount += 1
if labelCount > 1:
plt.legend(loc=legendLocation)
ax = plt.gca()
if titleFontSize is None:
titleFontSize = config.get('plot', 'titleFontSize')
axis_font = {'size': config.get('plot', 'axisFontSize')}
title_font = {'size': titleFontSize,
'color': config.get('plot', 'titleFontColor'),
'weight': config.get('plot', 'titleFontWeight')}
if firstYearXTicks is not None:
minDays = date_to_days(year=firstYearXTicks, calendar=calendar)
plot_xtick_format(calendar, minDays, maxDays, maxXTicks,
yearStride=yearStrideXTicks)
# Add a y=0 line if y ranges between positive and negative values
yaxLimits = ax.get_ylim()
if yaxLimits[0] * yaxLimits[1] < 0:
x = ax.get_xlim()
plt.plot(x, np.zeros(np.size(x)), 'k-', linewidth=1.2, zorder=1)
if title is not None:
plt.title(title, **title_font)
if xlabel is not None:
plt.xlabel(xlabel, **axis_font)
if ylabel is not None:
plt.ylabel(ylabel, **axis_font)
return fig
[docs]def timeseries_analysis_plot_polar(config, dsvalues, title,
movingAveragePoints=None, lineColors=None,
lineStyles=None, markers=None,
lineWidths=None, legendText=None,
titleFontSize=None, figsize=(15, 6),
dpi=None):
"""
Plots the list of time series data sets on a polar plot.
Parameters
----------
config : instance of ConfigParser
the configuration, containing a [plot] section with options that
control plotting
dsvalues : list of xarray DataSets
the data set(s) to be plotted
movingAveragePoints : int
the numer of time points over which to perform a moving average
title : str
the title of the plot
lineColors, lineStyles, markers, legendText : list of str, optional
control line color, style, marker, and corresponding legend
text. Default is black, solid line with no marker, and no legend.
lineWidths : list of float, optional
control line width. Default is 1.0.
titleFontSize : int, optional
the size of the title font
figsize : tuple of float, optional
the size of the figure in inches
dpi : int, optional
the number of dots per inch of the figure, taken from section ``plot``
option ``dpi`` in the config file by default
Returns
-------
fig : ``matplotlib.figure.Figure``
The resulting figure
"""
# Authors
# -------
# Adrian K. Turner, Xylar Asay-Davis
if dpi is None:
dpi = config.getint('plot', 'dpi')
fig = plt.figure(figsize=figsize, dpi=dpi)
minDays = []
maxDays = []
labelCount = 0
for dsIndex in range(len(dsvalues)):
dsvalue = dsvalues[dsIndex]
if dsvalue is None:
continue
mean = pd.Series.rolling(dsvalue.to_pandas(), movingAveragePoints,
center=True).mean()
mean = xr.DataArray.from_series(mean)
minDays.append(mean.Time.min())
maxDays.append(mean.Time.max())
if legendText is None:
label = None
else:
label = legendText[dsIndex]
labelCount += 1
if lineColors is None:
color = 'k'
else:
color = lineColors[dsIndex]
if lineStyles is None:
linestyle = '-'
else:
linestyle = lineStyles[dsIndex]
if markers is None:
marker = None
else:
marker = markers[dsIndex]
if lineWidths is None:
linewidth = 1.
else:
linewidth = lineWidths[dsIndex]
plt.polar((mean['Time'] / 365.0) * np.pi * 2.0, mean, color=color,
linestyle=linestyle, marker=marker, linewidth=linewidth,
label=label)
if labelCount > 1:
plt.legend(loc='lower left')
ax = plt.gca()
# set azimuthal axis formatting
majorTickLocs = np.zeros(12)
minorTickLocs = np.zeros(12)
majorTickLocs[0] = 0.0
minorTickLocs[0] = (constants.daysInMonth[0] * np.pi) / 365.0
for month in range(1, 12):
majorTickLocs[month] = majorTickLocs[month - 1] + \
((constants.daysInMonth[month - 1] * np.pi * 2.0) / 365.0)
minorTickLocs[month] = minorTickLocs[month - 1] + \
(((constants.daysInMonth[month - 1] +
constants.daysInMonth[month]) * np.pi) / 365.0)
ax.set_xticks(majorTickLocs)
ax.set_xticklabels([])
ax.set_xticks(minorTickLocs, minor=True)
ax.set_xticklabels(constants.abrevMonthNames, minor=True)
if titleFontSize is None:
titleFontSize = config.get('plot', 'titleFontSize')
title_font = {'size': titleFontSize,
'color': config.get('plot', 'titleFontColor'),
'weight': config.get('plot', 'titleFontWeight')}
if title is not None:
plt.title(title, **title_font)
return fig
# vim: foldmethod=marker ai ts=4 sts=4 et sw=4 ft=python