# This software is open source software available under the BSD-3 license.
#
# Copyright (c) 2022 Triad National Security, LLC. All rights reserved.
# Copyright (c) 2022 Lawrence Livermore National Security, LLC. All rights
# reserved.
# Copyright (c) 2022 UT-Battelle, LLC. All rights reserved.
#
# Additional copyright and license information can be found in the LICENSE file
# distributed with this code, or at
# https://raw.githubusercontent.com/MPAS-Dev/MPAS-Analysis/main/LICENSE
#
# Author
# -------
# Carolyn Begeman
from distutils.spawn import find_executable
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess
import xarray as xr
from mpas_analysis.shared.analysis_task import AnalysisTask
from mpas_analysis.shared.constants import constants
from mpas_analysis.shared.html import write_image_xml
from mpas_analysis.shared.io import open_mpas_dataset
from mpas_analysis.shared.io.utility import build_config_full_path, \
make_directories, get_files_year_month, decode_strings
from mpas_analysis.shared.plot import timeseries_analysis_plot, savefig
from mpas_analysis.shared.timekeeping.utility import date_to_days, \
days_to_datetime
[docs]
class ConservationTask(AnalysisTask):
"""
This task generates time series plots from output from the conservation
analysis member. A number of different plot types are supported, as indicated
in the `plotTypes` config option in the `conservation` section.
Attributes
----------
config : mpas_tools.config.MpasConfigParser
Contains configuration options
controlConfig : mpas_tools.config.MpasConfigParser
Contains configuration options for a control run, if provided
outputFile : str
The path to the output file produced by this analysis
runDirectory : str
The path to the restart files from the main simulation being analyzed
historyDirectory : str
The path to the history files from the main simulation being analyzed
startYear : int
The year to start the analysis
endYear : int
The year to end the analysis
inputFiles : list of str
The paths to all conservation AM files
mainRunName : str
The name of the main run from the config file
plotTypes : list of str
The plot types requested in the config file
masterVariableList : dict of key-[list of str] pairs
Keys are the supported plot types. Entries are lists of the variables
that are needed to produce that plot type.
derivedVariableList : dict of key-[list of str] pairs
Keys are the derived variables. Entries are lists of variables in the
AM output that are needed to derive that variable.
xmlFileNames : list of str
File names for xml output with full path
filePrefixes : list of str
File prefixes for xml files
variableList : dict of key-[list of str] pairs
Keys are the requested plot types. Entries are lists of the variables
in the AM output that are needed to produce that plot type.
"""
# Authors
# -------
# Carolyn Begeman
[docs]
def __init__(self, config, controlConfig):
"""
Construct the analysis task.
Parameters
----------
config : mpas_tools.config.MpasConfigParser
Contains configuration options
"""
# Authors
# -------
# Carolyn Begeman
super(ConservationTask, self).__init__(
config=config,
taskName='oceanConservation',
componentName='ocean',
tags=['timeSeries', 'conservation'])
self.controlConfig = controlConfig
def setup_and_check(self):
"""
Perform steps to set up the analysis and check for errors in the setup.
Also, adds attributes to the task that will be needed later.
Raises
------
ValueError: if plot type is not supported, conservation analysis member
is inactive or input files are missing
"""
# Authors
# -------
# Carolyn Begeman
super(ConservationTask, self).setup_and_check()
# Check that the conservation analysis member is active
self.check_analysis_enabled(
analysisOptionName='config_am_conservationcheck_enable',
raiseException=True)
# Specify where to put analysis task output
config = self.config
baseDirectory = build_config_full_path(
config, 'output', 'conservationSubdirectory')
make_directories(baseDirectory)
self.outputFile = f'{baseDirectory}/{self.fullTaskName}.nc'
# get a list of conservationCheck output files from the streams file,
# reading only those that are between the start and end dates
# the run directory contains the restart files
self.runDirectory = build_config_full_path(self.config, 'input',
'runSubdirectory')
# if the history directory exists, use it; if not, fall back on
# runDirectory
self.historyDirectory = build_config_full_path(
self.config, 'input',
f'{self.componentName}HistorySubdirectory',
defaultPath=self.runDirectory)
self.startYear = self.config.getint('timeSeries', 'startYear')
self.endYear = self.config.getint('timeSeries', 'endYear')
self.inputFiles = sorted(self.historyStreams.readpath(
'conservationCheckOutput',
startDate=f'{self.startYear:04d}-01-01_00:00:00',
endDate=f'{self.endYear:04d}-01-01_00:00:00',
calendar=self.calendar))
if len(self.inputFiles) == 0:
raise IOError(f'No files were found matching {self.inputFiles}')
with xr.open_dataset(self.inputFiles[0]) as ds:
self.allVariables = list(ds.data_vars.keys())
self.mainRunName = self.config.get('runs', 'mainRunName')
self.plotTypes = self.config.getexpression('timeSeriesConservation', 'plotTypes')
self.masterVariableList = {
'absolute_energy_error': ['absoluteEnergyError'],
'total_energy': ['finalEnergy'],
'total_energy_flux': ['netEnergyFlux'],
'total_energy_change': ['energyAnomaly'],
'total_salt_change': ['saltAnomaly'],
'total_salt': ['finalSalt'],
'absolute_salt_error': ['absoluteSaltError'],
'ice_salt_flux': ['netSaltFlux'],
'sea_ice_salt_flux': ['accumulatedSeaIceSalinityFlux'],
'total_mass_flux': ['netMassFlux'],
'total_mass': ['finalMass'],
'total_mass_change': ['massAnomaly'],
'rain_mass_flux': ['accumulatedRainFlux'],
'snow_mass_flux': ['accumulatedSnowFlux'],
'evaporation_mass_flux': ['accumulatedEvaporationFlux'],
'sea_ice_mass_flux': ['accumulatedSeaIceFlux'],
'river_runoff_mass_flux': ['accumulatedRiverRunoffFlux'],
'ice_runoff_mass_flux': ['accumulatedIceRunoffFlux'],
'iceberg_mass_flux': ['accumulatedIcebergFlux'],
'frazil_mass_flux': ['accumulatedFrazilFlux'],
'ice_shelf_frazil_mass_flux': ['accumulatedLandIceFrazilFlux'],
'ice_shelf_melt_mass_flux': ['accumulatedLandIceFlux'],
'land_ice_mass_change': ['landIceMassChange'],
'land_ice_ssh_change': ['landIceSshChange'],
'land_ice_mass_flux': ['landIceMassFlux'],
'land_ice_mass_flux_components': ['accumulatedIcebergFlux',
'accumulatedLandIceFlux',
'accumulatedRemovedRiverRunoffFlux',
'accumulatedRemovedIceRunoffFlux']}
# for each derived variable, which source variables are needed
self.derivedVariableList = {
'massAnomaly': ['massChange', 'netMassFlux'],
'energyAnomaly': ['energyChange', 'netEnergyFlux'],
'saltAnomaly': ['saltChange', 'netSaltFlux'],
'landIceMassFlux': ['accumulatedIcebergFlux',
'accumulatedLandIceFlux',
'accumulatedRemovedRiverRunoffFlux',
'accumulatedRemovedIceRunoffFlux'],
'landIceSshChange': ['accumulatedIcebergFlux',
'accumulatedLandIceFlux',
'accumulatedRemovedRiverRunoffFlux',
'accumulatedRemovedIceRunoffFlux'],
'landIceMassChange': ['accumulatedIcebergFlux',
'accumulatedLandIceFlux',
'accumulatedRemovedRiverRunoffFlux',
'accumulatedRemovedIceRunoffFlux']}
# Determine the xml files for each plot and the variables each plot will use
self.xmlFileNames = []
self.filePrefixes = {}
self.variableList = {}
for plot_type in self.plotTypes:
if plot_type not in self.masterVariableList.keys():
raise ValueError(f'plot type {plot_type} not supported')
filePrefix = f'conservation_{self.mainRunName}_{plot_type}_' \
f'years{self.startYear:04d}-{self.endYear:04d}'
self.xmlFileNames.append(f'{self.plotsDirectory}/{filePrefix}.xml')
self.filePrefixes[plot_type] = filePrefix
self.variableList[plot_type] = self._add_variables(self.masterVariableList[plot_type])
def run_task(self):
"""
Create an output netCDF file that has all of the requested conservation AM variables
in the requested time window. Then generate all requested conservation plot types.
"""
# Authors
# -------
# Carolyn Begeman
all_plots_variable_list = []
for plot_type in self.plotTypes:
for varname in self.variableList[plot_type]:
all_plots_variable_list.append(varname)
self._compute_time_series_with_ncrcat(all_plots_variable_list)
for plot_type in self.plotTypes:
self._make_plot(plot_type)
def _add_variables(self, target_variable_list):
"""
Add one or more variables to extract as a time series.
Parameters
----------
variableList : list of str
A list of variable names in ``conservationCheck`` to be
included in the time series
Raises
------
ValueError
if this function is called before this task has been set up (so
the list of available variables has not yet been set) or if one
or more of the requested variables is not available in the
``conservationCheck`` output.
"""
# Authors
# -------
# Xylar Asay-Davis
variable_list = []
if self.allVariables is None:
raise ValueError('add_variables() can only be called after '
'setup_and_check() in ConservationTask.\n'
'Presumably tasks were added in the wrong order '
'or add_variables() is being called in the wrong '
'place.')
for variable in target_variable_list:
if variable not in self.allVariables and \
variable not in self.derivedVariableList.keys():
raise ValueError(
f'{variable} is not available in conservationCheck'
'output:\n{self.allVariables}')
if variable in self.allVariables and variable not in variable_list:
variable_list.append(variable)
# If it's a derived variable, add all of the variables it depends on
if variable in self.derivedVariableList.keys() and \
variable not in variable_list:
for var in self.derivedVariableList[variable]:
variable_list.append(var)
return variable_list
def _make_plot(self, plot_type):
"""
Generate time series plots from conservation AM output.
Parameters
----------
plot_type: str
The type of plot to generate from conservationCheck variables
"""
config = self.config
filePrefix = self.filePrefixes[plot_type]
outFileName = f'{self.plotsDirectory}/{filePrefix}.png'
titles = {}
titles['total_energy_flux'] = 'Total energy flux'
titles['total_energy'] = 'Total energy'
titles['absolute_energy_error'] = 'Energy error'
titles['total_energy_change'] = 'Cumulative energy change'
titles['total_salt_change'] = 'Cumulative salt change'
titles['total_salt'] = 'Total salt'
titles['ice_salt_flux'] = 'Salt flux related to land ice and sea ice'
titles['sea_ice_salt_flux'] = 'Salt flux related to sea ice, frazil excluded'
titles['absolute_salt_error'] = 'Salt conservation error'
titles['total_mass_flux'] = 'Total mass flux'
titles['total_mass'] = 'Total mass'
titles['total_mass_change'] = 'Cumulative mass change'
titles['rain_mass_flux'] = 'Mass flux due to rain'
titles['snow_mass_flux'] = 'Mass flux due to snow'
titles['evaporation_mass_flux'] = 'Mass flux due to evaporation'
titles['sea_ice_mass_flux'] = 'Mass flux due to sea ice'
titles['river_runoff_mass_flux'] = 'Mass flux due to river runoff'
titles['ice_runoff_mass_flux'] = 'Mass flux due to ice runoff'
titles['iceberg_mass_flux'] = 'Mass flux due to icebergs'
titles['frazil_mass_flux'] = 'Mass flux due to frazil'
titles['ice_shelf_frazil_mass_flux'] = 'Mass flux due to ice shelf frazil'
titles['ice_shelf_melt_mass_flux'] = 'Mass flux due to ice shelf melt'
titles['land_ice_mass_flux'] = 'Mass flux due to land ice'
titles['land_ice_mass_change'] = 'Mass anomaly due to land ice fluxes'
titles['land_ice_ssh_change'] = 'SSH anomaly due to land ice fluxes'
titles['land_ice_mass_flux_components'] = 'Mass fluxes from land ice'
y_labels = {}
y_labels['total_energy_flux'] = 'Energy flux (W)'
y_labels['total_energy'] = 'Energy (J)'
y_labels['absolute_energy_error'] = 'Energy (J)'
y_labels['total_energy_change'] = 'Energy (J)'
y_labels['total_salt_change'] = 'Salt (Gt)'
y_labels['total_salt'] = 'Salt (Gt)'
y_labels['ice_salt_flux'] = 'Salt flux (Gt/yr)'
y_labels['sea_ice_salt_flux'] = 'Salt flux (Gt/yr)'
y_labels['absolute_salt_error'] = 'Salt (Gt)'
y_labels['total_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['total_mass'] = 'Mass (Gt)'
y_labels['rain_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['snow_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['evaporation_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['sea_ice_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['river_runoff_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['ice_runoff_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['iceberg_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['frazil_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['ice_shelf_frazil_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['ice_shelf_melt_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['total_mass_change'] = 'Mass (Gt)'
y_labels['land_ice_mass_flux'] = 'Mass flux (Gt/yr)'
y_labels['land_ice_mass_change'] = 'Mass (Gt)'
y_labels['land_ice_ssh_change'] = 'SSH anomaly (mm)'
y_labels['land_ice_mass_flux_components'] = 'Mass flux (Gt/yr)'
captions = {}
captions['total_energy_flux'] = 'Total energy flux'
captions['total_energy'] = 'Total energy'
captions['absolute_energy_error'] = 'Absolute energy conservation error'
captions['total_energy_change'] = 'Cumulative energy change'
captions['total_salt_change'] = 'Cumulative salt change'
captions['total_salt'] = 'Total salt'
captions['ice_salt_flux'] = 'Salt flux related to land ice and sea ice ' \
'(sea ice salinity flux, sea ice frazil flux, and land ice frazil flux)'
captions['sea_ice_salt_flux'] = 'Salt flux related to sea ice excluding frazil' \
'(sea ice salinity flux)'
captions['absolute_salt_error'] = 'Absolute salt conservation error'
captions['total_mass_flux'] = 'Total mass flux'
captions['total_mass'] = 'Total mass'
captions['rain_mass_flux'] = 'Mass flux due to rain'
captions['snow_mass_flux'] = 'Mass flux due to snow'
captions['evaporation_mass_flux'] = 'Mass flux due to evaporation'
captions['sea_ice_mass_flux'] = 'Mass flux due to sea ice'
captions['river_runoff_mass_flux'] = 'Mass flux due to river runoff'
captions['ice_runoff_mass_flux'] = 'Mass flux due to ice runoff'
captions['iceberg_mass_flux'] = 'Mass flux due to icebergs'
captions['frazil_mass_flux'] = 'Mass flux due to frazil'
captions['ice_shelf_frazil_mass_flux'] = 'Mass flux due to ice shelf frazil'
captions['ice_shelf_melt_mass_flux'] = 'Mass flux due to ice shelf melt'
captions['total_mass_change'] = 'Cumulative mass change'
captions['land_ice_mass_flux'] = 'Mass flux due to land ice'
captions['land_ice_mass_change'] = 'Mass anomaly due to land ice fluxes'
captions['land_ice_ssh_change'] = 'SSH anomaly due to land ice fluxes. ' \
'Assumes a constant ocean area.'
captions['land_ice_mass_flux_components'] = 'Mass flux components from land ice'
self.logger.info(f' Open conservation file {self.outputFile}...')
ds = open_mpas_dataset(fileName=self.outputFile,
calendar=self.calendar,
variableList=self.variableList[plot_type],
timeVariableNames='xtime',
startDate=f'{self.startYear:04d}-01-01_00:00:00',
endDate=f'{self.endYear:04d}-01-01_00:00:00')
if self.controlConfig is not None:
baseDirectory = build_config_full_path(
self.controlConfig, 'output', 'timeSeriesSubdirectory')
controlFileName = f'{baseDirectory}/{self.fullTaskName}.nc'
self.logger.info(' Load in conservation for a control run '
f'{controlFileName}...')
ds_ref = open_mpas_dataset(fileName=controlFileName,
calendar=self.calendar,
variableList=self.variableList[plot_type],
timeVariableNames='xtime')
controlEndYear = self.controlConfig.getint('timeSeries', 'endYear')
if self.startYear <= controlEndYear:
timeStart = date_to_days(year=self.startYear, month=1, day=1,
calendar=self.calendar)
timeEnd = date_to_days(year=self.endYear, month=12, day=31,
calendar=self.calendar)
ds_ref_slice = \
ds_ref.sel(Time=slice(timeStart, timeEnd))
else:
self.logger.warning('Control time series ends before the '
'timeSeries startYear and will not be '
'plotted.')
self.controlConfig = None
# make the plot
self.logger.info(' Make conservation plots...')
xLabel = 'Time (years)'
title = titles[plot_type]
yLabel = y_labels[plot_type]
lineStylesBase = ['-', '--', '-.', ':']
# gather all the variables for this plot type
fields = []
legendText = []
lineColors = []
lineStyles = []
for index, varname in enumerate(self.masterVariableList[plot_type]):
variable = self._get_variable(ds, varname)
fields.append(variable)
legend_text = ''
if self.controlConfig is not None:
legend_text = self.mainRunName
if len(self.masterVariableList[plot_type]) > 1:
if len(legend_text) > 0:
legend_text = f'{legend_text}, '
legend_text = f"{legend_text}{varname.replace('accumulated', '').replace('Flux', '')}"
legendText.append(legend_text)
lineColors.append(config.get('timeSeries', 'mainColor'))
lineStyles.append(lineStylesBase[index])
if self.controlConfig is not None:
variable = self._get_variable(ds_ref, varname)
fields.append(variable)
legend_text = self.controlConfig.get('runs', 'mainRunName')
if len(self.masterVariableList[plot_type]) > 1:
legend_text = f"{legend_text}, " \
f"{varname.replace('accumulated', '').replace('Flux', '')}"
legendText.append(legend_text)
lineColors.append(config.get('timeSeries', 'controlColor'))
lineStyles.append(lineStylesBase[index])
lineWidths = [3 for i in fields]
if config.has_option('timeSeriesConservation', 'movingAveragePoints'):
# We assume here that movingAveragePoints is given in months
# and conservation output has daily frequency
movingAveragePoints = \
config.getint('timeSeriesConservation', 'movingAveragePoints')
else:
movingAveragePoints = None
if config.has_option('timeSeries', 'firstYearXTicks'):
firstYearXTicks = config.getint('timeSeries',
'firstYearXTicks')
else:
firstYearXTicks = None
if config.has_option('timeSeries', 'yearStrideXTicks'):
yearStrideXTicks = config.getint('timeSeries',
'yearStrideXTicks')
else:
yearStrideXTicks = None
timeseries_analysis_plot(config, fields, calendar=self.calendar,
title=title, xlabel=xLabel, ylabel=yLabel,
movingAveragePoints=movingAveragePoints,
lineColors=lineColors,
lineStyles=lineStyles[:len(fields)],
lineWidths=lineWidths,
legendText=legendText,
firstYearXTicks=firstYearXTicks,
yearStrideXTicks=yearStrideXTicks)
# save the plot to the output file
plt.savefig(outFileName)
caption = captions[plot_type]
write_image_xml(
config=self.config,
filePrefix=filePrefix,
componentName='Ocean',
componentSubdirectory='ocean',
galleryGroup='Time Series',
groupLink='timeseries',
gallery='Conservation',
thumbnailDescription=title,
imageDescription=caption,
imageCaption=caption)
def _get_variable(self, ds, varname, mks=False):
if varname not in self.derivedVariableList:
variable = ds[varname]
else:
# Here we keep the units mks
if varname == 'massAnomaly':
source_variable = self._get_variable(ds, 'massChange', mks=False)
variable = source_variable.cumsum(axis=0)
elif varname == 'saltAnomaly':
source_variable = self._get_variable(ds, 'saltChange', mks=False)
variable = source_variable.cumsum(axis=0)
elif varname == 'energyAnomaly':
source_variable = self._get_variable(ds, 'energyChange', mks=True)
variable = source_variable.cumsum(axis=0)
elif varname == 'landIceMassChange':
land_ice_mass_flux = self._get_variable(ds, 'landIceMassFlux', mks=True)
# Assume that the frequency of output is monthly
dt = constants.sec_per_month
# Convert from kg/s to kg/month
land_ice_mass_flux = land_ice_mass_flux * dt
# Convert from kg/month to kg
variable = np.cumsum(land_ice_mass_flux)
elif varname == 'landIceMassFlux':
variable = self._get_variable(ds, 'accumulatedIcebergFlux', mks=True) + \
self._get_variable(ds, 'accumulatedLandIceFlux', mks=True) + \
self._get_variable(ds, 'accumulatedRemovedRiverRunoffFlux', mks=True) + \
self._get_variable(ds, 'accumulatedRemovedIceRunoffFlux', mks=True)
elif varname == 'landIceSshChange':
ts_files = sorted(self.historyStreams.readpath(
'timeSeriesStatsMonthlyOutput',
startDate=f'{self.startYear:04d}-01-01_00:00:00',
endDate=f'{self.endYear:04d}-01-01_00:00:00',
calendar=self.calendar))
# Note that here we assume that the area of the ocean is constant in time
# to save computational expense because most configurations do not allow
# the area of the ocean to change
ts_file = ts_files[0]
if not os.path.exists(ts_file):
raise ValueError(f'Could not find timeMonthlyStats file {ts_file}')
var = 'timeMonthly_avg_areaCellGlobal'
ds_ts = open_mpas_dataset(fileName=ts_file,
calendar=self.calendar,
variableList=[var])
A = ds_ts[var].mean()
land_ice_mass_change = self._get_variable(ds, 'landIceMassChange', mks=True)
rho = self.namelist.getfloat('config_density0')
# Convert from to kg to m
variable = land_ice_mass_change / (rho * A)
else:
raise ValueError(f'Attempted to derive non-supported variable {varname}')
removed_vars = ['accumulatedRemovedRiverRunoffFlux',
'accumulatedRemovedIceRunoffFlux']
if varname in removed_vars:
variable = -variable
if not mks:
# Here we do all the unit conversion from mks into whatever we want
mass_vars = ['initialMass', 'finalMass', 'absoluteMassError',
'relativeMassError', 'massChange', 'landIceMassChange']
salt_vars = ['initialSalt', 'finalSalt', 'absoluteSaltError',
'relativeSaltError', 'saltChange']
mass_flux_vars = ['netMassFlux', 'landIceMassFlux']
salt_flux_vars = ['netSaltFlux, accumulatedSeaIceSalinityFlux']
ssh_vars = ['landIceSshChange', 'sshChange']
if (varname in mass_vars) or (varname in salt_vars):
# Convert from kg to Gt
variable = variable * 1e-12
if (varname in mass_flux_vars) or (varname in salt_flux_vars):
# Convert from kg/s to Gt/yr
variable = variable * 1e-12 * constants.sec_per_year
if varname in ssh_vars:
# Convert from m to mm
variable = variable * 1e3
return variable
def _compute_time_series_with_ncrcat(self, variable_list):
"""
Uses ncrcat to extact time series from conservationCheckOutput files
Raises
------
OSError
If ``ncrcat`` is not in the system path.
"""
if find_executable('ncrcat') is None:
raise OSError('ncrcat not found. Make sure the latest nco '
'package is installed: \n'
'conda install nco\n'
'Note: this presumes use of the conda-forge '
'channel.')
inputFiles = self.inputFiles
append = False
if os.path.exists(self.outputFile):
# make sure all the necessary variables are also present
with xr.open_dataset(self.outputFile) as ds:
if ds.sizes['Time'] == 0:
updateSubset = False
else:
updateSubset = True
for variableName in variable_list:
if variableName not in ds.variables:
updateSubset = False
break
if updateSubset:
# add only input files with times that aren't already in
# the output file
append = True
fileNames = sorted(self.inputFiles)
inYears, inMonths = get_files_year_month(
fileNames, self.historyStreams,
'conservationCheckOutput')
inYears = np.array(inYears)
inMonths = np.array(inMonths)
totalMonths = 12 * inYears + inMonths
dates = decode_strings(ds.xtime)
lastDate = dates[-1]
lastYear = int(lastDate[0:4])
lastMonth = int(lastDate[5:7])
lastTotalMonths = 12 * lastYear + lastMonth
inputFiles = []
for index, inputFile in enumerate(fileNames):
if totalMonths[index] > lastTotalMonths:
inputFiles.append(inputFile)
if len(inputFiles) == 0:
# nothing to do
return
else:
# there is an output file but it has the wrong variables
# so we need ot delete it.
self.logger.warning('Warning: deleting file {self.outputFile}'
' because it is empty or some variables'
' were missing')
os.remove(self.outputFile)
variableList = variable_list + ['xtime']
args = ['ncrcat', '-4', '--no_tmp_fl',
'-v', ','.join(variableList)]
if append:
args.append('--record_append')
allArgs = ' '.join(args)
printCommand = f'{allArgs} {inputFiles[0]} ... {inputFiles[-1]} ' \
f'{self.outputFile}'
args.extend(inputFiles)
args.append(self.outputFile)
self.logger.info(f'running: {printCommand}')
for handler in self.logger.handlers:
handler.flush()
process = subprocess.Popen(args, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
if stdout:
stdout = stdout.decode('utf-8')
for line in stdout.split('\n'):
self.logger.info(line)
if stderr:
stderr = stderr.decode('utf-8')
for line in stderr.split('\n'):
self.logger.error(line)
if process.returncode != 0:
raise subprocess.CalledProcessError(process.returncode,
' '.join(args))