import numpy
from shapely.geometry import LineString, Point
from mpas_tools.vector import Vector
[docs]
def subdivide_great_circle(x, y, z, maxRes, earthRadius):
"""
Subdivide each segment of the transect so the horizontal resolution
approximately matches the requested resolution
Uses a formula for interpolating unit vectors on the sphere from
https://en.wikipedia.org/wiki/Slerp
Parameters
----------
x : numpy.ndarray
The Cartesian x coordinate of a transect, where the number of segments
is ``len(x) - 1``. ``x``, ``y`` and ``z`` are of the same length.
y : numpy.ndarray
The Cartesian y coordinate of the transect
z : numpy.ndarray
The Cartesian z coordinate of the transect
maxRes : float
The maximum allowed spacing in m after subdivision
earthRadius : float
The radius of the Earth in m
Returns
-------
xOut : numpy.ndarray
The Cartesian x values of the transect subdivided into segments with
segment length at most ``maxRes``. All the points in ``x``, ``y`` and
``z`` are guaranteed to be included.
yOut : numpy.ndarray
The Cartesian y values of the subdivided transect
zOut : numpy.ndarray
The Cartesian y values of the subdivided transect
dIn : numpy.ndarray
The distance along the transect before subdivision
dOut : numpy.ndarray
The distance along the transect after subdivision
"""
angularDistance = angular_distance(x=x, y=y, z=z)
dx = angularDistance * earthRadius
nSegments = numpy.maximum(
(dx / maxRes + 0.5).astype(int), 1)
dIn = numpy.zeros(x.shape)
dIn[1:] = numpy.cumsum(dx)
frac = []
outIndices = []
delta = []
for index in range(len(dIn) - 1):
n = nSegments[index]
frac.extend(numpy.arange(0, n)/n)
outIndices.extend(index*numpy.ones(n, int))
delta.extend(angularDistance[index]*numpy.ones(n))
frac.append(1.)
outIndices.append(len(dIn) - 2)
delta.append(angularDistance[-1])
frac = numpy.array(frac)
delta = numpy.array(delta)
outIndices = numpy.array(outIndices)
a = numpy.ones(delta.shape)
b = numpy.zeros(delta.shape)
mask = delta > 0.
denom = 1./numpy.sin(delta[mask])
a[mask] = denom*numpy.sin((1.-frac[mask])*delta[mask])
b[mask] = denom*numpy.sin(frac[mask]*delta[mask])
xOut = a*x[outIndices] + b*x[outIndices+1]
yOut = a*y[outIndices] + b*y[outIndices+1]
zOut = a*z[outIndices] + b*z[outIndices+1]
dOut = (-frac + 1.)*dIn[outIndices] + frac*dIn[outIndices+1]
return xOut, yOut, zOut, dIn, dOut
[docs]
def cartesian_to_great_circle_distance(x, y, z, earth_radius):
"""
Cartesian transect points to great-circle distance
Parameters
----------
x : numpy.ndarray
The Cartesian x coordinate of a transect
y : numpy.ndarray
The Cartesian y coordinate of the transect
z : numpy.ndarray
The Cartesian z coordinate of the transect
earth_radius : float
The radius of the earth
Returns
-------
distance : numpy.ndarray
The distance along the transect
"""
distance = numpy.zeros(x.shape)
for segIndex in range(len(x)-1):
transectv0 = Vector(x[segIndex], y[segIndex], z[segIndex])
transectv1 = Vector(x[segIndex+1], y[segIndex+1], z[segIndex+1])
distance[segIndex+1] = distance[segIndex] + \
earth_radius*transectv0.angular_distance(transectv1)
return distance
[docs]
def subdivide_planar(x, y, maxRes):
"""
Subdivide each segment of the transect so the horizontal resolution
approximately matches the requested resolution
Uses a formula for interpolating unit vectors on the sphere from
https://en.wikipedia.org/wiki/Slerp
Parameters
----------
x : numpy.ndarray
The planar x coordinate of a transect, where the number of segments
is ``len(x) - 1``
y : numpy.ndarray
The planar y coordinates of the transect, the same length as ``x``
maxRes : float
The maximum allowed spacing in m after subdivision
Returns
-------
xOut : numpy.ndarray
The x coordinate of the transect, subdivided into segments with length
at most ``maxRes``. All the points in ``x`` are guaranteed to be
included.
yOut : numpy.ndarray
The y coordinate of the transect. All the points in ``y`` are
guaranteed to be included.
dIn : numpy.ndarray
The distance along the transect before subdivision
dOut : numpy.ndarray
The distance along the transect after subdivision
"""
dx = numpy.zeros(len(x)-1)
for index in range(len(x)-1):
start = Point(x[index], y[index])
end = Point(x[index+1], y[index+1])
segment = LineString([start, end])
dx[index] = segment.length
nSegments = numpy.maximum(
(dx / maxRes + 0.5).astype(int), 1)
dIn = numpy.zeros(x.shape)
dIn[1:] = numpy.cumsum(dx)
frac = []
outIndices = []
for index in range(len(dIn) - 1):
n = nSegments[index]
frac.extend(numpy.arange(0, n)/n)
outIndices.extend(index*numpy.ones(n, int))
frac.append(1.)
outIndices.append(len(dIn) - 2)
frac = numpy.array(frac)
outIndices = numpy.array(outIndices)
xOut = (-frac + 1.)*x[outIndices] + frac*x[outIndices+1]
yOut = (-frac + 1.)*y[outIndices] + frac*y[outIndices+1]
dOut = (-frac + 1.)*dIn[outIndices] + frac*dIn[outIndices+1]
return xOut, yOut, dIn, dOut
[docs]
def lon_lat_to_cartesian(lon, lat, earth_radius, degrees):
"""Convert from lon/lat to Cartesian x, y, z"""
if degrees:
lon = numpy.deg2rad(lon)
lat = numpy.deg2rad(lat)
x = earth_radius * numpy.cos(lat) * numpy.cos(lon)
y = earth_radius * numpy.cos(lat) * numpy.sin(lon)
z = earth_radius * numpy.sin(lat)
return x, y, z
[docs]
def cartesian_to_lon_lat(x, y, z, earth_radius, degrees):
"""Convert from Cartesian x, y, z to lon/lat"""
lon = numpy.arctan2(y, x)
lat = numpy.arcsin(z/earth_radius)
if degrees:
lon = numpy.rad2deg(lon)
lat = numpy.rad2deg(lat)
return lon, lat
[docs]
def angular_distance(x, y, z):
"""
Compute angular distance between points on the sphere, following:
https://en.wikipedia.org/wiki/Great-circle_distance
Parameters
----------
x : numpy.ndarray
The Cartesian x coordinate of a transect, where the number of segments
is ``len(x) - 1``. ``x``, ``y`` and ``z`` are of the same length.
y : numpy.ndarray
The Cartesian y coordinate of the transect
z : numpy.ndarray
The Cartesian z coordinate of the transect
Returns
-------
distance : numpy.ndarray
The angular distance (in radians) between segments of the transect.
"""
first = Vector(x[0:-1], y[0:-1], z[0:-1])
second = Vector(x[1:], y[1:], z[1:])
distance = first.angular_distance(second)
return distance