Source code for mpas_tools.vector

import numpy as np


[docs] class Vector: """ A class for representing Cartesian vectors with ``x``, ``y`` and ``z`` components that are either ``float`` or ``numpy.array`` objects of identical size. Attributes ---------- x : float or numpy.ndarray The x component(s) y : float or numpy.ndarray The y component(s) z : float or numpy.ndarray The z component(s) """
[docs] def __init__(self, x, y, z): """ A class for representing Cartesian vectors with ``x``, ``y`` and ``z`` components that are either ``float`` or ``numpy.array`` objects of identical size. Parameters ---------- x : float or numpy.ndarray The x component(s) y : float or numpy.ndarray The y component(s) z : float or numpy.ndarray The z component(s) """ self.x = x self.y = y self.z = z
def angular_distance(self, other): """ Compute angular distance between points on the sphere, following: https://en.wikipedia.org/wiki/Great-circle_distance Parameters ---------- other : mpas_tools.vector.Vector The vector to compute the angular distance to Returns ------- angularDistance : numpy.ndarray The angular distance (in radians) between segments of the transect. """ angular_distance = np.arctan2(self.cross(other).mag(), self.dot(other)) return angular_distance @staticmethod def intersects(a1, a2, b1, b2): """ Based on https://stackoverflow.com/a/26669130/7728169 Determine if the great circle arc from ``a1`` to ``a2`` intersects that from ``b1`` to ``b2``. Parameters ---------- a1 : mpas_tools.vector.Vector Cartesian coordinates of the end point of a great circle arc. The types of the attributes ``x``, ``y``, and ``z`` must either be ``numpy.arrays`` of identical size for all 4 vectors (in which case intersections are found element-wise), or scalars for at least one of either ``a1`` and ``a2`` or ``b1`` and ``b2``. a2 : mpas_tools.vector.Vector Cartesian coordinates of the other end point of a great circle arc. b1 : mpas_tools.vector.Vector Cartesian coordinates of an end point of a second great circle arc. b2 : mpas_tools.vector.Vector Cartesian coordinates of the other end point of the second great circle arc. Returns ------- intersect : numpy.ndarray A boolean array of the same size as ``a1`` and ``a2`` or ``b1`` and ``b2``, whichever is greater, indicating if the particular pair of arcs intersects """ return np.logical_and(Vector.straddles(a1, a2, b1, b2), Vector.straddles(b1, b2, a1, a2)) @staticmethod def intersection(a1, a2, b1, b2): """ Based on https://stackoverflow.com/a/26669130/7728169 Find the intersection point as a unit vector between great circle arc from ``a1`` to ``a2`` and from ``b1`` to ``b2``. The arcs should have already have been found to intersect by calling ``intersects()`` Parameters ---------- a1 : mpas_tools.vector.Vector Cartesian coordinates of the end point of a great circle arc. The types of the attributes ``x``, ``y``, and ``z`` must either be ``numpy.arrays`` of identical size for all 4 vectors (in which case intersections are found element-wise), or scalars for at least one of either ``a1`` and ``a2`` or ``b1`` and ``b2``. a2 : mpas_tools.vector.Vector Cartesian coordinates of the other end point of a great circle arc. b1 : mpas_tools.vector.Vector Cartesian coordinates of an end point of a second great circle arc. b2 : mpas_tools.vector.Vector Cartesian coordinates of the other end point of the second great circle arc. Returns ------- points : mpas_tools.vector.Vector An array of Cartesian points *on the unit sphere* indicating where the arcs intersect """ points = (a1.cross(a2)).cross(b1.cross(b2)) s = np.sign(Vector.det(a1, b1, b2))/points.mag() points = Vector(s*points.x, s*points.y, s*points.z) return points @staticmethod def straddles(a1, a2, b1, b2): """ Based on https://stackoverflow.com/a/26669130/7728169 Determines if the great circle segment determined by (a1, a2) straddles the great circle determined by (b1, b2) Parameters ---------- a1 : mpas_tools.vector.Vector Cartesian coordinates of first end point of first great circle arc. The types of the attributes ``x``, ``y``, and ``z`` must either be ``numpy.arrays`` of identical size for all 4 vectors (in which case intersections are found element-wise), or scalars for at least one of either the a's or the b's. a2 : mpas_tools.vector.Vector Second end point of first great circle arc. b1 : mpas_tools.vector.Vector First end point of second great circle arc. b2 : mpas_tools.vector.Vector Second end point of second great circle arc. Returns ------- straddle : numpy.ndarray A boolean array of the same size as the a's or the b's, whichever is greater, indicating if the great circle segment determined by (a1, a2) straddles the great circle determined by (b1, b2) """ return Vector.det(a1, b1, b2) * Vector.det(a2, b1, b2) < 0 def dot(self, other): """ Compute the dot product between this vector and ``other``. Parameters ---------- other : mpas_tools.vector.Vector The other vector Returns ------- dot_product : numpy.ndarray The dot product """ return self.x * other.x + self.y * other.y + self.z * other.z def cross(self, other): """ Compute the dot product between this vector and ``other``. Parameters ---------- other : mpas_tools.vector.Vector The other vector Returns ------- cross_product : mpas_tools.vector.Vector The cross product """ return Vector(self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x) @staticmethod def det(v1, v2, v3): """ The determinant of the matrix defined by the three ``Vector`` objects Parameters ---------- v1 : mpas_tools.vector.Vector First row of the matrix v2 : mpas_tools.vector.Vector Second row v3 : mpas_tools.vector.Vector Third row Returns ------- determinant : numpy.ndarray The determinant of the matrix """ return v1.dot(v2.cross(v3)) def mag(self): """ The magnitude of the vector Returns ------- magnitude : numpy.ndarray The magnitude of the vector """ return np.sqrt(self.dot(self))