Source code for compass.landice.tests.antarctica.mesh

import os

import netCDF4
from mpas_tools.logging import check_call
from mpas_tools.scrip.from_mpas import scrip_from_mpas

from compass.landice.mesh import (
    add_bedmachine_thk_to_ais_gridded_data,
    build_cell_width,
    build_mali_mesh,
    clean_up_after_interp,
    interp_gridded2mali,
    make_region_masks,
    preprocess_ais_data,
)
from compass.model import make_graph_file
from compass.step import Step


[docs] class Mesh(Step): """ A step for creating a mesh and initial condition for Antarctica test cases Attributes ---------- mesh_filename : str File name of the MALI mesh """
[docs] def __init__(self, test_case): """ Create the step Parameters ---------- test_case : compass.TestCase The test case this step belongs to """ super().__init__(test_case=test_case, name='mesh', cpus_per_task=128, min_cpus_per_task=1) self.mesh_filename = 'Antarctica.nc' self.add_output_file(filename='graph.info') self.add_output_file(filename=self.mesh_filename) self.add_output_file( filename=f'{self.mesh_filename[:-3]}_imbie_regionMasks.nc') self.add_output_file( filename=f'{self.mesh_filename[:-3]}_ismip6_regionMasks.nc') self.add_input_file( filename='antarctica_8km_2024_01_29.nc', target='antarctica_8km_2024_01_29.nc', database='')
# no setup() method is needed
[docs] def run(self): """ Run this step of the test case """ logger = self.logger config = self.config section_ais = config['antarctica'] nProcs = section_ais.get('nProcs') src_proj = section_ais.get("src_proj") data_path = section_ais.get('data_path') measures_filename = section_ais.get("measures_filename") bedmachine_filename = section_ais.get("bedmachine_filename") measures_dataset = os.path.join(data_path, measures_filename) bedmachine_dataset = os.path.join(data_path, bedmachine_filename) section_name = 'mesh' # TODO: do we want to add this to the config file? source_gridded_dataset = 'antarctica_8km_2024_01_29.nc' bm_updated_gridded_dataset = add_bedmachine_thk_to_ais_gridded_data( self, source_gridded_dataset, bedmachine_dataset) logger.info('calling build_cell_width') cell_width, x1, y1, geom_points, geom_edges, floodFillMask = \ build_cell_width( self, section_name=section_name, gridded_dataset=bm_updated_gridded_dataset) # Now build the base mesh and perform the standard interpolation build_mali_mesh( self, cell_width, x1, y1, geom_points, geom_edges, mesh_name=self.mesh_filename, section_name=section_name, gridded_dataset=bm_updated_gridded_dataset, projection=src_proj, geojson_file=None) # Now that we have base mesh with standard interpolation # perform advanced interpolation for specific fields # that require more careful treatment # Add iceMask for later trimming if not already in file. # It should be automatically added as of MPAS-Tools commit # df90de2c434ed24bbbaf9ca353c2a91de1140654 # Aug 8, 2022, but safest to double check here. data = netCDF4.Dataset(self.mesh_filename, 'r+') if 'iceMask' not in data.variables: data.createVariable('iceMask', 'f', ('Time', 'nCells')) data.variables['iceMask'][:] = 0. data.close() # Preprocess the gridded AIS source datasets to work # with the rest of the workflow logger.info('calling preprocess_ais_data') preprocessed_gridded_dataset = preprocess_ais_data( self, bm_updated_gridded_dataset, floodFillMask) # interpolate fields from *preprocessed* composite dataset # NOTE: while this has already been done in `build_mali_mesh()` # we are using an updated version of the gridded dataset here, # which has had unit conversion and extrapolation done. # Also, it should be assessed if bilinear or # barycentric used here is preferred for this application. # Current thinking is they are both equally appropriate. logger.info('calling interpolate_to_mpasli_grid.py') args = ['interpolate_to_mpasli_grid.py', '-s', preprocessed_gridded_dataset, '-d', self.mesh_filename, '-m', 'd', '-v', 'floatingBasalMassBal', 'basalHeatFlux', 'sfcMassBal', 'surfaceAirTemperature', 'observedThicknessTendency', 'observedThicknessTendencyUncertainty', 'thickness'] check_call(args, logger=logger) # Create scrip file for the newly generated mesh logger.info('creating scrip file for destination mesh') dst_scrip_file = f"{self.mesh_filename.split('.')[:-1][0]}_scrip.nc" scrip_from_mpas(self.mesh_filename, dst_scrip_file) # Now perform bespoke interpolation of geometry and velocity data # from their respective sources interp_gridded2mali(self, bedmachine_dataset, dst_scrip_file, nProcs, self.mesh_filename, src_proj, variables="all") # only interpolate a subset of MEaSUREs variables onto the MALI mesh measures_vars = ['observedSurfaceVelocityX', 'observedSurfaceVelocityY', 'observedSurfaceVelocityUncertainty'] interp_gridded2mali(self, measures_dataset, dst_scrip_file, nProcs, self.mesh_filename, src_proj, variables=measures_vars) # perform some final cleanup details clean_up_after_interp(self.mesh_filename) # create graph file logger.info('creating graph.info') make_graph_file(mesh_filename=self.mesh_filename, graph_filename='graph.info') # create a region mask mask_filename = f'{self.mesh_filename[:-3]}_imbie_regionMasks.nc' make_region_masks(self, self.mesh_filename, mask_filename, self.cpus_per_task, tags=['EastAntarcticaIMBIE', 'WestAntarcticaIMBIE', 'AntarcticPeninsulaIMBIE'], all_tags=False) mask_filename = f'{self.mesh_filename[:-3]}_ismip6_regionMasks.nc' make_region_masks(self, self.mesh_filename, mask_filename, self.cpus_per_task, tags=['ISMIP6_Basin'])