Source code for compass.landice.tests.greenland.mesh

import os

import numpy as np
import xarray as xr
from mpas_tools.scrip.from_mpas import scrip_from_mpas

from compass.landice.mesh import (
    build_cell_width,
    build_mali_mesh,
    clean_up_after_interp,
    interp_gridded2mali,
    make_region_masks,
)
from compass.model import make_graph_file
from compass.step import Step


[docs] class Mesh(Step): """ A step for creating a mesh and initial condition for greenland test cases Attributes ---------- mesh_filename : str File name of the MALI mesh """
[docs] def __init__(self, test_case): """ Create the step Parameters ---------- test_case : compass.TestCase The test case this step belongs to """ super().__init__(test_case=test_case, name='mesh', cpus_per_task=128, min_cpus_per_task=1) # output files self.mesh_filename = 'GIS.nc' self.add_output_file(filename='graph.info') self.add_output_file(filename=self.mesh_filename) self.add_output_file( filename=f'{self.mesh_filename[:-3]}_ismip6_regionMasks.nc') self.add_output_file( filename=f'{self.mesh_filename[:-3]}_zwally_regionMasks.nc') # input files self.add_input_file( filename='greenland_1km_2024_01_29.epsg3413.icesheetonly.nc', target='greenland_1km_2024_01_29.epsg3413.icesheetonly.nc', database='') self.add_input_file(filename='greenland_2km_2024_01_29.epsg3413.nc', target='greenland_2km_2024_01_29.epsg3413.nc', database='')
# no setup() method is needed
[docs] def run(self): """ Run this step of the test case """ logger = self.logger config = self.config section_gis = config['greenland'] nProcs = section_gis.get('nProcs') src_proj = section_gis.get("src_proj") data_path = section_gis.get('data_path') measures_filename = section_gis.get("measures_filename") bedmachine_filename = section_gis.get("bedmachine_filename") measures_dataset = os.path.join(data_path, measures_filename) bedmachine_dataset = os.path.join(data_path, bedmachine_filename) section_name = 'mesh' source_gridded_dataset_1km = 'greenland_1km_2024_01_29.epsg3413.icesheetonly.nc' # noqa: E501 source_gridded_dataset_2km = 'greenland_2km_2024_01_29.epsg3413.nc' logger.info('calling build_cell_width') cell_width, x1, y1, geom_points, geom_edges, floodMask = \ build_cell_width( self, section_name=section_name, gridded_dataset=source_gridded_dataset_2km, flood_fill_start=[100, 700]) # Now build the base mesh and perform the standard interpolation build_mali_mesh( self, cell_width, x1, y1, geom_points, geom_edges, mesh_name=self.mesh_filename, section_name=section_name, gridded_dataset=source_gridded_dataset_1km, projection=src_proj, geojson_file=None) # Create scrip file for the newly generated mesh logger.info('creating scrip file for destination mesh') dst_scrip_file = f"{self.mesh_filename.split('.')[:-1][0]}_scrip.nc" scrip_from_mpas(self.mesh_filename, dst_scrip_file) # Now perform bespoke interpolation of geometry and velocity data # from their respective sources interp_gridded2mali(self, bedmachine_dataset, dst_scrip_file, nProcs, self.mesh_filename, src_proj, variables="all") # only interpolate a subset of MEaSUREs variables onto the MALI mesh measures_vars = ['observedSurfaceVelocityX', 'observedSurfaceVelocityY', 'observedSurfaceVelocityUncertainty'] interp_gridded2mali(self, measures_dataset, dst_scrip_file, nProcs, self.mesh_filename, src_proj, variables=measures_vars) # perform some final cleanup details clean_up_after_interp(self.mesh_filename) # create graph file logger.info('creating graph.info') make_graph_file(mesh_filename=self.mesh_filename, graph_filename='graph.info') # create region masks mask_filename = f'{self.mesh_filename[:-3]}_ismip6_regionMasks.nc' make_region_masks(self, self.mesh_filename, mask_filename, self.cpus_per_task, tags=["Greenland", "ISMIP6", "Shelf"], component='ocean') mask_filename = f'{self.mesh_filename[:-3]}_zwally_regionMasks.nc' make_region_masks(self, self.mesh_filename, mask_filename, self.cpus_per_task, tags=['eastCentralGreenland', 'northEastGreenland', 'northGreenland', 'northWestGreenland', 'southEastGreenland', 'southGreenland', 'southWestGreenland', 'westCentralGreenland'], all_tags=False) # Do some final validation of the mesh ds = xr.open_dataset(self.mesh_filename) # Ensure basalHeatFlux is positive ds["basalHeatFlux"] = np.abs(ds.basalHeatFlux) # Ensure reasonable dHdt values dHdt = ds["observedThicknessTendency"] # Arbitrary 5% uncertainty; improve this later dHdtErr = np.abs(dHdt) * 0.05 # Use threshold of |dHdt| > 1.0 to determine invalid data mask = np.abs(dHdt) > 1.0 # Assign very large uncertainty where data is missing dHdtErr = dHdtErr.where(~mask, 1.0) # Remove ridiculous values dHdt = dHdt.where(~mask, 0.0) # Put the updated fields back in the dataset ds["observedThicknessTendency"] = dHdt ds["observedThicknessTendencyUncertainty"] = dHdtErr # Write the data to disk ds.to_netcdf(self.mesh_filename, 'a')