Source code for compass.landice.tests.hydro_radial.visualize

import matplotlib.pyplot as plt
import netCDF4
import numpy as np

from compass.step import Step


[docs] class Visualize(Step): """ A step for visualizing the output from a dome test case """
[docs] def __init__(self, test_case, name='visualize', subdir=None, input_dir='run_model'): """ Create the step Parameters ---------- test_case : compass.TestCase The test case this step belongs to name : str, optional the name of the test case subdir : str, optional the subdirectory for the step. The default is ``name`` input_dir : str, optional The input directory within the test case with a file ``output.nc`` to visualize """ super().__init__(test_case=test_case, name=name, subdir=subdir) self.add_input_file(filename='output.nc', target='../{}/output.nc'.format(input_dir)) self.add_input_file(filename='landice_grid.nc', target='../{}/landice_grid.nc'.format(input_dir)) self.add_input_file(filename='near_exact_solution_r_P_W.txt', package='compass.landice.tests.hydro_radial')
# depending on settings, this will produce no outputs, so we won't add any # no setup method is needed
[docs] def run(self): """ Run this step of the test case """ visualize_hydro_radial(self.config, self.logger)
[docs] def visualize_hydro_radial(config, logger): """ Plot the output from a hydro_radial test case Parameters ---------- config : compass.config.CompassConfigParser Configuration options for this test case, a combination of the defaults for the machine, core and configuration logger : logging.Logger A logger for output from the step """ section = config['hydro_radial_viz'] time_slice = section.getint('time_slice') save_images = section.getboolean('save_images') hide_figs = section.getboolean('hide_figs') filename = 'output.nc' grid_filename = 'landice_grid.nc' f = netCDF4.Dataset(filename, 'r') xCell = f.variables['xCell'][:] yCell = f.variables['yCell'][:] xEdge = f.variables['xEdge'][:] yEdge = f.variables['yEdge'][:] h = f.variables['waterThickness'][time_slice, :] u = f.variables['waterVelocityCellX'][time_slice, :] P = f.variables['waterPressure'][time_slice, :] N = f.variables['effectivePressure'][time_slice, :] div = f.variables['divergence'][time_slice, :] opening = f.variables['openingRate'][time_slice, :] closing = f.variables['closingRate'][time_slice, :] melt = f.variables['basalMeltInput'][time_slice, :] sliding = f.variables['basalSpeed'][time_slice, :] days = f.variables['daysSinceStart'][:] logger.info("Total number of time levels={}".format(len(days))) logger.info("Using time slice {}, which is year {}".format( time_slice, days[time_slice] / 365.0)) logger.info("Attempting to read thickness field from " "{}.".format(grid_filename)) fin = netCDF4.Dataset(grid_filename, 'r') H = fin.variables['thickness'][0, :] # Find center row - currently files are set up to have central row at y=0 unique_ys = np.unique(yCell[:]) centerY = unique_ys[len(unique_ys) // 2] logger.info("number of ys={}, center y index={}, center Y value={}".format( len(unique_ys), len(unique_ys) // 2, centerY)) ind = np.nonzero(yCell[:] == centerY) x = xCell[ind] / 1000.0 logger.info("start plotting.") fig = plt.figure(1, facecolor='w') # import exact solution fnameSoln = 'near_exact_solution_r_P_W.txt' soln = np.loadtxt(fnameSoln, delimiter=',') rsoln = soln[:, 0] / 1000.0 Psoln = soln[:, 1] / 1.0e5 Wsoln = soln[:, 2] # water thickness ax1 = fig.add_subplot(121) plt.plot(rsoln, Wsoln, 'k-', label='W exact') plt.plot(x, h[ind], 'r.--', label='W model') plt.xlabel('X-position (km)') plt.ylabel('water depth (m)') plt.legend() plt.plot([5.0, 5.0], [0.0, 1.0], ':k') plt.grid(True) # water pressure fig.add_subplot(122, sharex=ax1) plt.plot(x, H[ind] * 910.0 * 9.80616 / 1.0e5, 'g:', label='P_o') plt.plot(rsoln, Psoln, 'k-', label='P_w exact') plt.plot(x, P[ind] / 1.0e5, 'r.--', label='P_w model') plt.xlabel('X-position (km)') plt.ylabel('water pressure (bar)') plt.legend() plt.plot([5.0, 5.0], [0.0, 45.0], ':k') plt.grid(True) if save_images: plt.savefig('hydro_radial_vs_exact.png', dpi=250) # plot how close to SS we are fig = plt.figure(2, facecolor='w') ax1 = fig.add_subplot(211) for i in ind: plt.plot(days / 365.0, f.variables['waterThickness'][:, i]) plt.xlabel('Years since start') plt.ylabel('water thickness (m)') plt.grid(True) fig.add_subplot(212, sharex=ax1) for i in ind: plt.plot(days / 365.0, f.variables['effectivePressure'][:, i] / 1.0e6) plt.xlabel('Years since start') plt.ylabel('effective pressure (MPa)') plt.grid(True) if save_images: plt.savefig('hydro_radial_steady_state.png', dpi=250) # plot opening/closing rates fig = plt.figure(3, facecolor='w') nplt = 5 fig.add_subplot(nplt, 1, 1) plt.plot(x, opening[ind], 'r', label='opening') plt.plot(x, closing[ind], 'b', label='closing') plt.plot(x, melt[ind] / 1000.0, 'g', label='melt') plt.xlabel('X-position (km)') plt.ylabel('rate (m/s)') plt.legend() plt.grid(True) # SS N=f(h) fig.add_subplot(nplt, 1, 2) plt.plot(x, N[ind] / 1.0e6, '.-', label='modeled transient to SS') # steady state N=f(h) from the cavity evolution eqn N = (opening[ind] / (0.04 * 3.1709792e-24 * h[ind]))**0.3333333 / 1.0e6 plt.plot(x, N, '.--r', label='SS N=f(h)') plt.xlabel('X-position (km)') plt.ylabel('effective pressure (MPa)') plt.grid(True) plt.legend() fig.add_subplot(nplt, 1, 3) plt.plot(x, u[ind]) plt.ylabel('water velocity (m/s)') plt.grid(True) fig.add_subplot(nplt, 1, 4) plt.plot(x, u[ind] * h[ind]) plt.ylabel('water flux (m2/s)') plt.grid(True) fig.add_subplot(nplt, 1, 5) plt.plot(x, div[ind]) plt.plot(x, melt[ind] / 1000.0, 'g', label='melt') plt.ylabel('divergence (m/s)') plt.grid(True) if save_images: plt.savefig('hydro_radial_opening_closing.png', dpi=250) # plot some edge quantities inde = np.nonzero(yEdge[:] == centerY) xe = xEdge[inde] / 1000.0 ve = f.variables['waterVelocity'][time_slice, :] dphie = f.variables['hydropotentialBaseSlopeNormal'][time_slice, :] he = f.variables['waterThicknessEdgeUpwind'][time_slice, :] fluxe = f.variables['waterFluxAdvec'][time_slice, :] fig = plt.figure(5, facecolor='w') nplt = 5 ax1 = fig.add_subplot(nplt, 1, 1) plt.plot(xe, dphie[inde], '.') plt.ylabel('dphidx edge)') plt.grid(True) fig.add_subplot(nplt, 1, 2, sharex=ax1) plt.plot(x, P[ind], 'x') plt.ylabel('dphidx edge)') plt.grid(True) fig.add_subplot(nplt, 1, 3, sharex=ax1) plt.plot(xe, ve[inde], '.') plt.ylabel('vel edge)') plt.grid(True) fig.add_subplot(nplt, 1, 4, sharex=ax1) plt.plot(xe, he[inde], '.') plt.plot(x, h[ind], 'x') plt.ylabel('h edge)') plt.grid(True) fig.add_subplot(nplt, 1, 5, sharex=ax1) plt.plot(xe, fluxe[inde], '.') plt.ylabel('flux edge)') plt.grid(True) # ========== # Make plot similar to Bueler and van Pelt Fig. 5 # get thickness/pressure at time 0 - this should be the nearly-exact # solution interpolated onto the MPAS mesh h0 = f.variables['waterThickness'][0, :] P0 = f.variables['waterPressure'][0, :] # assuming sliding has been zeroed where there is no ice, so we don't need # to get the thickness field hasice = sliding > 0.0 Werr = np.absolute(h - h0) Perr = np.absolute(P - P0) dcEdge = f.variables['dcEdge'][:] # ideally should restrict this to edges with ice dx = dcEdge.mean() if save_images: plt.savefig('hydro_radial_edge.png', dpi=250) fig = plt.figure(6, facecolor='w') ax = fig.add_subplot(2, 1, 1) plt.plot(dx, Werr[hasice].mean(), 's', label='avg W err') plt.plot(dx, Werr[hasice].max(), 'x', label='max W err') ax.set_yscale('log') plt.grid(True) plt.legend() plt.xlabel('delta x (m)') plt.ylabel('error in W (m)') logger.info("avg W err={}".format(Werr[hasice].mean())) logger.info("max W err={}".format(Werr[hasice].max())) ax = fig.add_subplot(2, 1, 2) plt.plot(dx, Perr[hasice].mean() / 1.0e5, 's', label='avg P err') plt.plot(dx, Perr[hasice].max() / 1.0e5, 'x', label='max P err') ax.set_yscale('log') plt.grid(True) plt.legend() plt.xlabel('delta x (m)') plt.ylabel('error in P (bar)') logger.info("avg P err={}".format(Perr[hasice].mean() / 1.0e5)) logger.info("max P err={}".format(Perr[hasice].max() / 1.0e5)) logger.info("plotting complete") plt.draw() if save_images: plt.savefig('hydro_radial_error.png', dpi=250) if hide_figs: logger.info("Plot display disabled with hide_plot config option.") else: plt.show() f.close()