import xarray
import numpy
from mpas_tools.planar_hex import make_planar_hex_mesh
from mpas_tools.io import write_netcdf
from mpas_tools.mesh.conversion import convert, cull
from compass.ocean.vertical import init_vertical_coord
from compass.step import Step
[docs]
class InitialState(Step):
"""
A step for creating a mesh and initial condition for baroclinic channel
test cases
Attributes
----------
resolution : str
The resolution of the test case
"""
[docs]
def __init__(self, test_case, resolution):
"""
Create the step
Parameters
----------
test_case : compass.TestCase
The test case this step belongs to
resolution : str
The resolution of the test case
"""
super().__init__(test_case=test_case, name='initial_state')
self.resolution = resolution
for file in ['base_mesh.nc', 'culled_mesh.nc', 'culled_graph.info',
'ocean.nc']:
self.add_output_file(file)
[docs]
def run(self):
"""
Run this step of the test case
"""
config = self.config
logger = self.logger
section = config['baroclinic_channel']
nx = section.getint('nx')
ny = section.getint('ny')
dc = section.getfloat('dc')
dsMesh = make_planar_hex_mesh(nx=nx, ny=ny, dc=dc, nonperiodic_x=False,
nonperiodic_y=True)
write_netcdf(dsMesh, 'base_mesh.nc')
dsMesh = cull(dsMesh, logger=logger)
dsMesh = convert(dsMesh, graphInfoFileName='culled_graph.info',
logger=logger)
write_netcdf(dsMesh, 'culled_mesh.nc')
section = config['baroclinic_channel']
use_distances = section.getboolean('use_distances')
gradient_width_dist = section.getfloat('gradient_width_dist')
gradient_width_frac = section.getfloat('gradient_width_frac')
bottom_temperature = section.getfloat('bottom_temperature')
surface_temperature = section.getfloat('surface_temperature')
temperature_difference = section.getfloat('temperature_difference')
salinity = section.getfloat('salinity')
coriolis_parameter = section.getfloat('coriolis_parameter')
ds = dsMesh.copy()
xCell = ds.xCell
yCell = ds.yCell
bottom_depth = config.getfloat('vertical_grid', 'bottom_depth')
ds['bottomDepth'] = bottom_depth * xarray.ones_like(xCell)
ds['ssh'] = xarray.zeros_like(xCell)
init_vertical_coord(config, ds)
xMin = xCell.min().values
xMax = xCell.max().values
yMin = yCell.min().values
yMax = yCell.max().values
yMid = 0.5*(yMin + yMax)
xPerturbMin = xMin + 4.0 * (xMax - xMin) / 6.0
xPerturbMax = xMin + 5.0 * (xMax - xMin) / 6.0
if use_distances:
perturbationWidth = gradient_width_dist
else:
perturbationWidth = (yMax - yMin) * gradient_width_frac
yOffset = perturbationWidth * numpy.sin(
6.0 * numpy.pi * (xCell - xMin) / (xMax - xMin))
temp_vert = (bottom_temperature +
(surface_temperature - bottom_temperature) *
((ds.refZMid + bottom_depth) / bottom_depth))
frac = xarray.where(yCell < yMid - yOffset, 1., 0.)
mask = numpy.logical_and(yCell >= yMid - yOffset,
yCell < yMid - yOffset + perturbationWidth)
frac = xarray.where(mask,
1. - (yCell - (yMid - yOffset)) / perturbationWidth,
frac)
temperature = temp_vert - temperature_difference * frac
temperature = temperature.transpose('nCells', 'nVertLevels')
# Determine yOffset for 3rd crest in sin wave
yOffset = 0.5 * perturbationWidth * numpy.sin(
numpy.pi * (xCell - xPerturbMin) / (xPerturbMax - xPerturbMin))
mask = numpy.logical_and(
numpy.logical_and(yCell >= yMid - yOffset - 0.5 * perturbationWidth,
yCell <= yMid - yOffset + 0.5 * perturbationWidth),
numpy.logical_and(xCell >= xPerturbMin,
xCell <= xPerturbMax))
temperature = (temperature +
mask * 0.3 * (1. - ((yCell - (yMid - yOffset)) /
(0.5 * perturbationWidth))))
temperature = temperature.expand_dims(dim='Time', axis=0)
normalVelocity = xarray.zeros_like(ds.xEdge)
normalVelocity, _ = xarray.broadcast(normalVelocity, ds.refBottomDepth)
normalVelocity = normalVelocity.transpose('nEdges', 'nVertLevels')
normalVelocity = normalVelocity.expand_dims(dim='Time', axis=0)
ds['temperature'] = temperature
ds['salinity'] = salinity * xarray.ones_like(temperature)
ds['normalVelocity'] = normalVelocity
ds['fCell'] = coriolis_parameter * xarray.ones_like(xCell)
ds['fEdge'] = coriolis_parameter * xarray.ones_like(ds.xEdge)
ds['fVertex'] = coriolis_parameter * xarray.ones_like(ds.xVertex)
write_netcdf(ds, 'ocean.nc')