Source code for compass.ocean.tests.isomip_plus.viz.plot

import copy
import glob
import os
import subprocess

import cmocean  # noqa: F401
import matplotlib.pyplot as plt
import numpy
import progressbar
import xarray
from matplotlib.collections import PatchCollection
from matplotlib.colors import LogNorm
from matplotlib.patches import Polygon


[docs] class TimeSeriesPlotter(object): """ A plotter object to hold on to some info needed for plotting time series from ISOMIP+ simulation results Attributes ---------- inFolder : str The folder with simulation results outFolder : str The folder where images will be written expt : {'Ocean0', 'Ocean1', 'Ocean2'} The name of the experiment """
[docs] def __init__(self, inFolder='.', outFolder='plots', expt='Ocean0', dsMesh=None, ds=None): """ Create a plotter object to hold on to some info needed for plotting time series from ISOMIP+ simulation results Parameters ---------- inFolder : str, optional The folder with simulation results outFolder : str, optional The folder where images will be written expt : {'Ocean0', 'Ocean1', 'Ocean2'}, optional The name of the experiment dsMesh : xarray.Dataset, optional The MPAS mesh ds : xarray.Dataset, optional The time series output """ self.inFolder = inFolder self.outFolder = outFolder self.expt = expt if dsMesh is not None: self.dsMesh = dsMesh else: self.dsMesh = xarray.open_dataset( '{}/init.nc'.format(self.inFolder)) if ds is not None: self.ds = ds else: self.ds = xarray.open_mfdataset( '{}/timeSeriesStatsMonthly*.nc'.format(self.inFolder), concat_dim='Time', combine='nested') try: os.makedirs(self.outFolder) except OSError: pass plt.switch_backend('Agg')
[docs] def plot_melt_time_series(self, sshMax=None): """ Plot a series of image for each of several variables related to melt at the ice shelf-ocean interface: mean melt rate, total melt flux, mean thermal driving, mean friction velocity """ rho_fw = 1000. secPerYear = 365 * 24 * 60 * 60 areaCell = self.dsMesh.areaCell iceMask = self.ds.timeMonthly_avg_landIceFraction meltFlux = self.ds.timeMonthly_avg_landIceFreshwaterFlux if sshMax is not None: ssh = self.ds.timeMonthly_avg_ssh iceMask = iceMask.where(ssh < sshMax) totalMeltFlux = (meltFlux * areaCell * iceMask).sum(dim='nCells') totalArea = (areaCell * iceMask).sum(dim='nCells') meanMeltRate = totalMeltFlux / totalArea / rho_fw * secPerYear self.plot_time_series(meanMeltRate, 'mean melt rate', 'meanMeltRate', 'm/yr') self.plot_time_series(1e-6 * totalMeltFlux, 'total melt flux', 'totalMeltFlux', 'kT/yr') prefix = 'timeMonthly_avg_landIceBoundaryLayerTracers_' boundary_layer_temperature = \ self.ds[f'{prefix}landIceBoundaryLayerTemperature'] prefix = 'timeMonthly_avg_landIceInterfaceTracers_' interface_temperature = \ self.ds[f'{prefix}landIceInterfaceTemperature'] da = boundary_layer_temperature - interface_temperature da = (da * areaCell * iceMask).sum(dim='nCells') / totalArea self.plot_time_series(da, 'mean thermal driving', 'meanThermalDriving', 'deg C') da = self.ds.timeMonthly_avg_landIceFrictionVelocity da = (da * areaCell * iceMask).sum(dim='nCells') / totalArea self.plot_time_series(da, 'mean friction velocity', 'meanFrictionVelocity', 'm/s')
[docs] def plot_time_series(self, da, nameInTitle, prefix, units=None, figsize=(12, 6), color=None, overwrite=True): fileName = '{}/{}.png'.format(self.outFolder, prefix) if not overwrite and os.path.exists(fileName): return nTime = da.sizes['Time'] time = numpy.arange(nTime) / 12. plt.figure(1, figsize=figsize) plt.plot(time, da.values, color=color) if units is None: ylabel = nameInTitle else: ylabel = '{} ({})'.format(nameInTitle, units) plt.ylabel(ylabel) plt.xlabel('time (yrs)') plt.savefig(fileName) plt.close()
[docs] class MoviePlotter(object): """ A plotter object to hold on to some info needed for plotting images from ISOMIP+ simulation results Attributes ---------- inFolder : str The folder with simulation results streamfunctionFolder : str The folder where streamfunction input files were computed outFolder : str The folder where images will be written expt : {'Ocean0', 'Ocean1', 'Ocean2'} The name of the experiment sectionY : float The location along the y axis of a transect in the x-z plane to plot dsMesh : ``xarray.Dataset`` A data set with mesh data ds : ``xarray.Dataset`` A data set with the montly-mean simulation results oceanMask : ``numpy.ndarray`` A mask of cells that are in the ocean domain (probably all ones) cavityMask : ``numpy.ndarray`` A mask of cells that are in the sub-ice-shelf cavity oceanPatches : ``PatchCollection`` A set of polygons covering ocean cells cavityPatches : ``PatchCollection`` A set of polygons covering only cells in the cavity X, Z : ``numpy.ndarray`` The horiz. and vert. coordinates of the x-z cross section sectionMask : ``numpy.ndarray`` A mask for the cross section indicating where values are valid (i.e. above the bathymetry) showProgress : bool Whether to show a progressbar """
[docs] def __init__(self, inFolder, streamfunctionFolder, outFolder, expt, sectionY, dsMesh, ds, showProgress): """ Create a plotter object to hold on to some info needed for plotting images from ISOMIP+ simulation results Parameters ---------- inFolder : str The folder with simulation results streamfunctionFolder : str The folder where streamfunction input files were computed outFolder : str The folder where images will be written expt : {'Ocean0', 'Ocean1', 'Ocean2'} The name of the experiment sectionY : float The location along the y axis of a transect in the x-z plane to plot dsMesh : xarray.Dataset The MPAS mesh ds : xarray.Dataset The time series output showProgress : bool Whether to show a progressbar """ plt.switch_backend('Agg') self.inFolder = inFolder self.streamfunctionFolder = streamfunctionFolder self.outFolder = outFolder self.expt = expt self.sectionY = sectionY self.showProgress = showProgress self.dsMesh = dsMesh self.ds = ds landIceMask = self.dsMesh.landIceMask.isel(Time=0) > 0 self.oceanMask = self.dsMesh.maxLevelCell - 1 >= 0 self.cavityMask = numpy.logical_and(self.oceanMask, landIceMask) self.oceanPatches = _compute_cell_patches( self.dsMesh, self.oceanMask) self.cavityPatches = _compute_cell_patches( self.dsMesh, self.cavityMask) self.sectionCellIndices = _compute_section_cell_indices(self.sectionY, self.dsMesh) self._compute_section_x_z()
[docs] def plot_barotropic_streamfunction(self, vmin=None, vmax=None): """ Plot a series of image of the barotropic streamfunction Parameters ---------- vmin, vmax : float, optional The minimum and maximum values for the colorbar, defaults are chosen depending on ``expt`` """ ds = xarray.open_dataset('{}/barotropicStreamfunction.nc'.format( self.streamfunctionFolder)) if vmin is None or vmax is None: if self.expt in ['Ocean0', 'Ocean1']: vmin = -1 vmax = 1 else: vmin = -0.5 vmax = 0.5 nTime = ds.sizes['Time'] if self.showProgress: widgets = ['plotting barotropic streamfunction: ', progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()] bar = progressbar.ProgressBar(widgets=widgets, maxval=nTime).start() else: bar = None for tIndex in range(nTime): self.update_date(tIndex) bsf = ds.bsfCell.isel(Time=tIndex) outFileName = '{}/bsf/bsf_{:04d}.png'.format( self.outFolder, tIndex + 1) self._plot_horiz_field(bsf, title='barotropic streamfunction (Sv)', outFileName=outFileName, oceanDomain=True, vmin=vmin, vmax=vmax, cmap='cmo.curl') if self.showProgress: bar.update(tIndex + 1) if self.showProgress: bar.finish()
[docs] def plot_overturning_streamfunction(self, vmin=-0.3, vmax=0.3): """ Plot a series of image of the overturning streamfunction Parameters ---------- vmin, vmax : float, optional The minimum and maximum values for the colorbar """ ds = xarray.open_dataset('{}/overturningStreamfunction.nc'.format( self.streamfunctionFolder)) nTime = ds.sizes['Time'] if self.showProgress: widgets = ['plotting overturning streamfunction: ', progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()] bar = progressbar.ProgressBar(widgets=widgets, maxval=nTime).start() else: bar = None for tIndex in range(nTime): self.update_date(tIndex) osf = ds.osf.isel(Time=tIndex) outFileName = '{}/osf/osf_{:04d}.png'.format(self.outFolder, tIndex + 1) x = _interp_extrap_corner(ds.x.values) z = _interp_extrap_corner(ds.z.values) self._plot_vert_field( x, z, osf, title='overturning streamfunction (Sv)', outFileName=outFileName, vmin=vmin, vmax=vmax, cmap='cmo.curl', show_boundaries=False) if self.showProgress: bar.update(tIndex + 1) if self.showProgress: bar.finish()
[docs] def plot_melt_rates(self, vmin=-100., vmax=100.): """ Plot a series of image of the melt rate Parameters ---------- vmin, vmax : float, optional The minimum and maximum values for the colorbar """ rho_fw = 1000. secPerYear = 365 * 24 * 60 * 60 da = (secPerYear / rho_fw * self.ds.timeMonthly_avg_landIceFreshwaterFlux) self.plot_horiz_series(da, 'melt rate', prefix='meltRate', oceanDomain=False, units='m/yr', vmin=vmin, vmax=vmax, cmap='cmo.curl')
[docs] def plot_ice_shelf_boundary_variables(self): """ Plot a series of image for each of several variables related to the ice shelf-ocean interface: heat flux from the ocean, heat flux into the ice, thermal driving, haline driving, and the friction velocity under ice """ self.plot_horiz_series(self.ds.timeMonthly_avg_landIceHeatFlux, 'heat flux from ocean to ice-ocean interface', prefix='oceanHeatFlux', oceanDomain=False, units='W/s', vmin=-1e3, vmax=1e3, cmap='cmo.curl') self.plot_horiz_series(self.ds.timeMonthly_avg_heatFluxToLandIce, 'heat flux into ice at ice-ocean interface', prefix='iceHeatFlux', oceanDomain=False, units='W/s', vmin=-1e1, vmax=1e1, cmap='cmo.curl') prefix = 'timeMonthly_avg_landIceBoundaryLayerTracers_' boundary_layer_temperature = \ self.ds[f'{prefix}landIceBoundaryLayerTemperature'] boundary_layer_salinity = \ self.ds[f'{prefix}landIceBoundaryLayerSalinity'] prefix = 'timeMonthly_avg_landIceInterfaceTracers_' interface_temperature = \ self.ds[f'{prefix}landIceInterfaceTemperature'] interface_salinity = \ self.ds[f'{prefix}landIceInterfaceSalinity'] da = boundary_layer_temperature - interface_temperature self.plot_horiz_series(da, 'thermal driving', prefix='thermalDriving', oceanDomain=False, units='deg C', vmin=-2, vmax=2, cmap='cmo.thermal') da = boundary_layer_salinity - interface_salinity self.plot_horiz_series(da, 'haline driving', prefix='halineDriving', oceanDomain=False, units='PSU', vmin=-10, vmax=10, cmap='cmo.haline') self.plot_horiz_series(self.ds.timeMonthly_avg_landIceFrictionVelocity, 'friction velocity', prefix='frictionVelocity', oceanDomain=True, units='m/s', vmin=0, vmax=0.05, cmap='cmo.speed')
[docs] def plot_temperature(self): """ Plot a series of images of temperature at the sea surface or ice-ocean interface, sea floor and in an x-z section """ da = self.ds.timeMonthly_avg_activeTracers_temperature self.plot_3d_field_top_bot_section(da, nameInTitle='temperature', prefix='Temp', units='deg C', vmin=-2.5, vmax=1.0, cmap='cmo.thermal')
[docs] def plot_salinity(self): """ Plot a series of images of salinity at the sea surface or ice-ocean interface, sea floor and in an x-z section """ da = self.ds.timeMonthly_avg_activeTracers_salinity self.plot_3d_field_top_bot_section(da, nameInTitle='salinity', prefix='Salinity', units='PSU', vmin=33.8, vmax=34.7, cmap='cmo.haline')
[docs] def plot_potential_density(self): """ Plot a series of images of salinity at the sea surface or ice-ocean interface, sea floor and in an x-z section """ da = self.ds.timeMonthly_avg_potentialDensity self.plot_3d_field_top_bot_section(da, nameInTitle='potential density', prefix='PotRho', units='kg/m^3', vmin=1027., vmax=1028., cmap='cmo.dense')
def plot_haney_number(self, haneyFolder=None): """ Plot a series of images of the Haney number rx1 at the sea surface or ice-ocean interface, sea floor and in an x-z section Parameters ---------- haneyFolder : str, optional The location of the haney number output, default is ``inFolder`` """ if haneyFolder is None: haneyFolder = self.inFolder ds = xarray.open_dataset('{}/haney.nc'.format(haneyFolder)) self.plot_3d_field_top_bot_section(ds.haneyCell, nameInTitle='Haney Number (rx1)', prefix='Haney', units=None, vmin=0., vmax=8., cmap='cmo.matter')
[docs] def plot_horiz_series(self, da, nameInTitle, prefix, oceanDomain, units=None, vmin=None, vmax=None, cmap=None, cmap_set_under=None, cmap_set_over=None, cmap_scale='linear', time_indices=None, figsize=(9, 3)): """ Plot a series of image of a given variable Parameters ---------- da : ``xarray.DataArray`` The data array of time series to plot nameInTitle : str The name of the variable to use in the title and the progress bar prefix : str The nae of the variable to use in the subfolder and file prefix oceanDomain : bool True if the variable is for the full ocean, False if only for the cavity units : str, optional The units of the variable to be included in the title vmin, vmax : float, optional The minimum and maximum values for the colorbar cmap : Colormap or str, optional A color map to plot cmap_set_under : str or None, optional A color for low out-of-range values cmap_scale : {'log', 'linear'}, optional Whether the colormap is logarithmic or linear time_indices : list of int, optional The time indices at which to plot. If not provided, set to all. """ nTime = self.ds.sizes['Time'] if self.showProgress: widgets = ['plotting {}: '.format(nameInTitle), progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()] bar = progressbar.ProgressBar(widgets=widgets, maxval=nTime).start() else: bar = None if time_indices is None: time_indices = range(nTime) for tIndex in time_indices: self.update_date(tIndex) field = da.isel(Time=tIndex).values outFileName = '{}/{}/{}_{:04d}.png'.format( self.outFolder, prefix, prefix, tIndex + 1) if units is None: title = nameInTitle else: title = '{} ({})'.format(nameInTitle, units) self._plot_horiz_field(field, title=title, outFileName=outFileName, oceanDomain=oceanDomain, vmin=vmin, vmax=vmax, cmap=cmap, cmap_set_under=cmap_set_under, cmap_set_over=cmap_set_over, cmap_scale=cmap_scale, figsize=figsize) if self.showProgress: bar.update(tIndex + 1) if self.showProgress: bar.finish()
[docs] def plot_3d_field_top_bot_section(self, da, nameInTitle, prefix, units=None, vmin=None, vmax=None, cmap=None, cmap_set_under=None, cmap_set_over=None): """ Plot a series of images of a given 3D variable showing the value at the top (sea surface or ice-ocean interface), sea floor and in an x-z section Parameters ---------- da : ``xarray.DataArray`` The data array of time series to plot nameInTitle : str The name of the variable to use in the title and the progress bar prefix : str The nae of the variable to use in the subfolder and file prefix units : str, optional The units of the variable to be included in the title vmin, vmax : float, optional The minimum and maximum values for the colorbar cmap : Colormap or str, optional A color map to plot cmap_set_under : str or None, optional A color for low out-of-range values """ if vmin is None: vmin = da.min() if vmax is None: vmax = da.max() minLevelCell = self.dsMesh.minLevelCell - 1 daTop = xarray.DataArray(da) daTop.coords['verticalIndex'] = \ ('nVertLevels', numpy.arange(daTop.sizes['nVertLevels'])) # mask only the values with the right vertical index daTop = daTop.where(daTop.verticalIndex == minLevelCell) # Each vertical layer has at most one non-NaN value so the "sum" # over the vertical is used to collapse the array in the vertical # dimension daTop = daTop.sum(dim='nVertLevels').where(minLevelCell >= 0) self.plot_horiz_series(daTop, 'top {}'.format(nameInTitle), 'top{}'.format(prefix), oceanDomain=True, vmin=vmin, vmax=vmax, cmap=cmap, cmap_set_under=cmap_set_under, cmap_set_over=cmap_set_over) maxLevelCell = self.dsMesh.maxLevelCell - 1 daBot = xarray.DataArray(da) daBot.coords['verticalIndex'] = \ ('nVertLevels', numpy.arange(daBot.sizes['nVertLevels'])) # mask only the values with the right vertical index daBot = daBot.where(daBot.verticalIndex == maxLevelCell) # Each vertical layer has at most one non-NaN value so the "sum" # over the vertical is used to collapse the array in the vertical # dimension daBot = daBot.sum(dim='nVertLevels').where(maxLevelCell >= 0) self.plot_horiz_series(daBot, 'bot {}'.format(nameInTitle), 'bot{}'.format(prefix), oceanDomain=True, vmin=vmin, vmax=vmax, cmap=cmap) daSection = da.isel(nCells=self.sectionCellIndices) nTime = self.ds.sizes['Time'] if self.showProgress: widgets = ['plotting {} section: '.format(nameInTitle), progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()] bar = progressbar.ProgressBar(widgets=widgets, maxval=nTime).start() else: bar = None for tIndex in range(nTime): self.update_date(tIndex) mask = numpy.logical_not(self.sectionMask) field = numpy.ma.masked_array(daSection.isel(Time=tIndex).values.T, mask=mask) outFileName = '{}/section{}/section{}_{:04d}.png'.format( self.outFolder, prefix, prefix, tIndex + 1) if units is None: title = nameInTitle else: title = '{} ({}) along section at y={:g} km'.format( nameInTitle, units, 1e-3 * self.sectionY) self._plot_vert_field(self.X, self.Z[tIndex, :, :], field, title=title, outFileName=outFileName, vmin=vmin, vmax=vmax, cmap=cmap) if self.showProgress: bar.update(tIndex + 1) if self.showProgress: bar.finish()
[docs] def plot_layer_interfaces(self, figsize=(9, 5)): """ Plot layer interfaces, the sea surface height and the bottom topography of the cross section at fixed y. Parameters ---------- figsize : tuple, optional The size of the figure """ nTime = self.Z.shape[0] if self.showProgress: widgets = ['plotting section of layer interfaces: ', progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()] bar = progressbar.ProgressBar(widgets=widgets, maxval=nTime).start() else: bar = None z_mask = numpy.ones(self.X.shape) z_mask[0:-1, 0:-1] *= numpy.where(self.sectionMask, 1., numpy.nan) z_mask[1:, 0:-1] *= numpy.where(self.sectionMask, 1., numpy.nan) z_mask[0:-1, 1:] *= numpy.where(self.sectionMask, 1., numpy.nan) z_mask[1:, 1:] *= numpy.where(self.sectionMask, 1., numpy.nan) for tIndex in range(nTime): Z = numpy.array(self.Z[tIndex, :, :]) ylim = [numpy.amin(Z), 20] Z *= z_mask X = self.X self.update_date(tIndex) outFileName = '{}/layers/layers_{:04d}.png'.format(self.outFolder, tIndex + 1) if os.path.exists(outFileName): continue try: os.makedirs(os.path.dirname(outFileName)) except OSError: pass plt.figure(figsize=figsize) ax = plt.subplot(111) for z_index in range(1, X.shape[0]): plt.plot(1e-3 * X[z_index, :], Z[z_index, :], 'k') plt.plot(1e-3 * X[0, :], Z[0, :], 'b') plt.plot(1e-3 * X[0, :], self.zBotSection, 'g') ax.autoscale(tight=True) x1, x2, y1, y2 = 420, 470, -650, -520 xlim = [min(x1, 1e-3 * numpy.amin(X)), 1e-3 * numpy.amax(X)] plt.xlim(xlim) plt.ylim(ylim) axins = ax.inset_axes([0.01, 0.6, 0.3, 0.39]) for z_index in range(1, X.shape[0]): axins.plot(1e-3 * X[z_index, :], Z[z_index, :], 'k') axins.plot(1e-3 * X[0, :], Z[0, :], 'b') axins.plot(1e-3 * X[0, :], self.zBotSection, 'g') axins.set_xlim(x1, x2) axins.set_ylim(y1, y2) axins.set_xticklabels([]) axins.set_yticklabels([]) ax.indicate_inset_zoom(axins, edgecolor="black") plt.title('{} {}'.format('layer interfaces', self.date)) plt.tight_layout(pad=0.5) plt.savefig(outFileName) plt.close() if self.showProgress: bar.update(tIndex + 1) if self.showProgress: bar.finish()
[docs] def images_to_movies(self, outFolder, framesPerSecond=30, extension='mp4', overwrite=True): """ Convert all the image sequences into movies with ffmpeg """ try: os.makedirs('{}/logs'.format(outFolder)) except OSError: pass framesPerSecond = '{}'.format(framesPerSecond) for fileName in sorted(glob.glob( '{}/*/*0001.png'.format(self.outFolder))): prefix = os.path.basename(fileName)[:-9] outFileName = '{}/{}.{}'.format(outFolder, prefix, extension) if not overwrite and os.path.exists(outFileName): continue imageFileTemplate = '{}/{}/{}_%04d.png'.format(self.outFolder, prefix, prefix) logFileName = '{}/logs/{}.log'.format(outFolder, prefix) with open(logFileName, 'w') as logFile: args = ['ffmpeg', '-y', '-r', framesPerSecond, '-i', imageFileTemplate, '-b:v', '32000k', '-r', framesPerSecond, '-pix_fmt', 'yuv420p', outFileName] print('running {}'.format(' '.join(args))) subprocess.check_call(args, stdout=logFile, stderr=logFile)
def update_date(self, tIndex): if 'xtime_startMonthly' in self.ds: var = 'xtime_startMonthly' elif 'xtime' in self.ds: var = 'xtime' else: self.date = '' return xtime = self.ds[var].isel(Time=tIndex).values xtime = ''.join(str(xtime.astype('U'))).strip() year = xtime[0:4] month = xtime[5:7] day = xtime[8:10] self.date = '{}-{}-{}'.format(year, month, day) def _plot_horiz_field(self, field, title, outFileName, oceanDomain=True, vmin=None, vmax=None, figsize=(9, 3), cmap=None, cmap_set_under=None, cmap_set_over=None, cmap_scale='linear'): try: os.makedirs(os.path.dirname(outFileName)) except OSError: pass if os.path.exists(outFileName): return if oceanDomain: localPatches = copy.deepcopy(self.oceanPatches) localPatches.set_array(field[self.oceanMask]) else: localPatches = copy.deepcopy(self.cavityPatches) localPatches.set_array(field[self.cavityMask]) if cmap is not None: localPatches.set_cmap(cmap) if cmap_set_under is not None: current_cmap = localPatches.get_cmap() current_cmap.set_under(cmap_set_under) if cmap_set_over is not None: current_cmap = localPatches.get_cmap() current_cmap.set_over(cmap_set_over) localPatches.set_edgecolor('face') localPatches.set_clim(vmin=vmin, vmax=vmax) if cmap_scale == 'log': localPatches.set_norm(LogNorm(vmin=max(1e-10, vmin), vmax=vmax, clip=False)) plt.figure(figsize=figsize) ax = plt.subplot(111) ax.add_collection(localPatches) plt.colorbar(localPatches, extend='both') plt.axis([0, 500, 0, 1000]) ax.set_aspect('equal') ax.autoscale(tight=True) plt.title('{} {}'.format(title, self.date)) plt.tight_layout(pad=0.5) plt.savefig(outFileName) plt.close() def _plot_vert_field(self, inX, inZ, field, title, outFileName, vmin=None, vmax=None, figsize=(9, 5), cmap=None, show_boundaries=True): try: os.makedirs(os.path.dirname(outFileName)) except OSError: pass if os.path.exists(outFileName): return plt.figure(figsize=figsize) ax = plt.subplot(111) if show_boundaries: z_mask = numpy.ones(self.X.shape) z_mask[0:-1, 0:-1] *= numpy.where(self.sectionMask, 1., numpy.nan) tIndex = 0 Z = numpy.array(self.Z[tIndex, :, :]) Z *= z_mask X = self.X plt.fill_between(1e-3 * X[0, :], self.zBotSection, y2=0, facecolor='lightsteelblue', zorder=2) plt.fill_between(1e-3 * X[0, :], self.zBotSection, y2=-750, facecolor='grey', zorder=1) for z_index in range(1, X.shape[0]): plt.plot(1e-3 * X[z_index, :], Z[z_index, :], 'k', zorder=4) plt.pcolormesh(1e-3 * inX, inZ, field, vmin=vmin, vmax=vmax, cmap=cmap, zorder=3) plt.colorbar() ax.autoscale(tight=True) plt.ylim([numpy.amin(inZ), 20]) plt.xlim([400, 800]) plt.title('{} {}'.format(title, self.date)) plt.tight_layout(pad=0.5) plt.savefig(outFileName, dpi='figure') plt.close() def _compute_section_x_z(self): if 'xIsomipCell' in self.dsMesh.keys(): x = _interp_extrap_corner( self.dsMesh.xIsomipCell[self.sectionCellIndices]) else: x = _interp_extrap_corner( self.dsMesh.xCell[self.sectionCellIndices]) nx = len(x) nVertLevels = self.dsMesh.sizes['nVertLevels'] nTime = self.ds.sizes['Time'] self.X = numpy.zeros((nVertLevels + 1, nx)) for zIndex in range(nVertLevels + 1): self.X[zIndex, :] = x self.sectionMask = numpy.zeros((nVertLevels, nx - 1), dtype=bool) for zIndex in range(nVertLevels): minLevelCell = self.dsMesh.minLevelCell.isel( nCells=self.sectionCellIndices) - 1 maxLevelCell = self.dsMesh.maxLevelCell.isel( nCells=self.sectionCellIndices) - 1 self.sectionMask[zIndex, :] = numpy.logical_and( zIndex >= minLevelCell, zIndex <= maxLevelCell) self.Z = numpy.zeros((nTime, nVertLevels + 1, nx)) self.zBotSection = -_interp_extrap_corner( self.dsMesh.bottomDepth.isel( nCells=self.sectionCellIndices).values) for tIndex in range(nTime): if 'timeMonthly_avg_layerThickness' in self.ds: var = 'timeMonthly_avg_layerThickness' else: var = 'layerThickness' layerThickness = self.ds[var].isel( Time=tIndex, nCells=self.sectionCellIndices) layerThickness = layerThickness.values * self.sectionMask.T layerThickness = numpy.nan_to_num(layerThickness) self.Z[tIndex, -1, :] = self.zBotSection for zIndex in range(nVertLevels - 1, -1, -1): layerThicknessSection = _interp_extrap_corner( layerThickness[:, zIndex]) self.Z[tIndex, zIndex, :] = self.Z[tIndex, zIndex + 1, :] + \ layerThicknessSection
def _compute_cell_patches(dsMesh, mask): patches = [] nVerticesOnCell = dsMesh.nEdgesOnCell.values verticesOnCell = dsMesh.verticesOnCell.values - 1 if 'xIsomipVertex' in dsMesh.keys(): xVertex = dsMesh.xIsomipVertex.values yVertex = dsMesh.yIsomipVertex.values else: xVertex = dsMesh.xVertex.values yVertex = dsMesh.yVertex.values for iCell in range(dsMesh.sizes['nCells']): if not mask[iCell]: continue nVert = nVerticesOnCell[iCell] vertexIndices = verticesOnCell[iCell, :nVert] vertices = numpy.zeros((nVert, 2)) vertices[:, 0] = 1e-3 * xVertex[vertexIndices] vertices[:, 1] = 1e-3 * yVertex[vertexIndices] polygon = Polygon(vertices, closed=True) patches.append(polygon) p = PatchCollection(patches, alpha=1.) return p def _compute_section_cell_indices(y, dsMesh): if 'xIsomipCell' in dsMesh.keys(): xCell = dsMesh.xIsomipCell.values yCell = dsMesh.yIsomipCell.values else: xCell = dsMesh.xCell.values yCell = dsMesh.yCell.values xMin = numpy.amin(xCell) xMax = numpy.amax(xCell) xs = numpy.linspace(xMin, xMax, 10000) cellIndices = [] for x in xs: distanceSquared = (x - xCell)**2 + (y - yCell)**2 index = numpy.argmin(distanceSquared) if len(cellIndices) == 0 or cellIndices[-1] != index: cellIndices.append(index) return numpy.array(cellIndices) def _interp_extrap_corner(inField): """Interpolate/extrapolate a 1D field from grid centers to grid corners""" outField = numpy.zeros(len(inField) + 1) outField[1:-1] = 0.5 * (inField[0:-1] + inField[1:]) # extrapolate the ends outField[0] = 1.5 * inField[0] - 0.5 * inField[1] outField[-1] = 1.5 * inField[-1] - 0.5 * inField[-2] return outField